Geballe Laboratory for Advanced Materials , Stanford University , 476 Lomita Mall , Stanford , California 94305 , United States.
Nano Lett. 2018 Jun 13;18(6):3857-3864. doi: 10.1021/acs.nanolett.8b01148. Epub 2018 May 25.
The ability to control and structurally tune the optical resonances of semiconductor nanostructures has far-reaching implications for a wide range of optical applications, including photodetectors, (bio)sensors, and photovoltaics. Such control is commonly obtained by tailoring the nanostructure's geometry, material, or dielectric environment. Here, we combine insights from the field of coherent optics and metasurface mirrors to effectively turn Mie resonances on and off with high spatial control and in a polarization-dependent fashion. We illustrate this in an integrated device by manipulating the photocurrent spectra of a single-nanowire photodetector placed on a metasurface mirror. This approach can be generalized to control spectral, angle-dependent, absorption, and scattering properties of semiconductor nanostructures with an engineered metasurface and without a need to alter their geometric or materials properties.
控制和结构调整半导体纳米结构的光学共振,对包括光电探测器、(生物)传感器和光伏在内的广泛光学应用具有深远意义。这种控制通常通过调整纳米结构的几何形状、材料或介电环境来实现。在这里,我们结合相干光学和超表面镜领域的见解,以高空间控制和偏振相关的方式有效地开启和关闭 Mie 共振。我们通过在置于超表面镜上的单个纳米线光电探测器上操纵光电流光谱来对此进行说明。该方法可以推广到控制具有工程超表面的半导体纳米结构的光谱、角度相关、吸收和散射特性,而无需改变其几何或材料特性。