Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Nanoscale. 2018 Aug 16;10(32):15187-15194. doi: 10.1039/c8nr02170h.
The electrokinetic molecular concentration (EMC) effect at the micro-nanofluidic interface, which enables million-fold preconcentration of biomolecules, is one of the most compelling yet least understood nanofluidic phenomena. Despite the tremendous interests in EMC and the substantial efforts devoted, the detailed mechanism of EMC remains an enigma so far owing to its high complexity, which gives rise to the significant scientific controversies outstanding for over a decade and leaves the precise engineering of EMC devices infeasible. We report a series of experimental and theoretical new findings that decipher the mechanism of EMC. We demonstrate the first elucidation of two separate operating regimes of EMC, and establish the first theoretical model that analytically yet concisely describes the system. We further unveil the dramatically different scaling behaviors of EMC in the two regimes, thereby clarifying the long-lasting controversies. We believe this work represents important progress towards the scientific understanding of EMC and related nano-electrokinetic systems, and would enable the rational design and optimization of EMC devices for a variety of applications.
在微纳流控界面处的电动分子浓缩(EMC)效应,能够实现生物分子的百万倍预浓缩,是最引人注目的纳米流控现象之一。尽管人们对 EMC 有着巨大的兴趣并投入了大量的努力,但由于其高度复杂性,EMC 的详细机制迄今仍是一个谜,这导致了十多年来悬而未决的重大科学争议,也使得 EMC 器件的精确工程设计变得不可行。我们报告了一系列实验和理论上的新发现,这些发现揭示了 EMC 的机制。我们展示了 EMC 的两种独立工作模式的首次阐明,并建立了第一个分析性但简洁地描述该系统的理论模型。我们进一步揭示了 EMC 在这两种模式下的显著不同的缩放行为,从而澄清了长期存在的争议。我们相信,这项工作代表了在 EMC 及相关纳米电动系统的科学理解方面的重要进展,并将能够为各种应用实现 EMC 器件的合理设计和优化。