Suppr超能文献

基于连续尺寸的微流控芯片捕获前列腺癌循环肿瘤细胞。

Entrapment of Prostate Cancer Circulating Tumor Cells with a Sequential Size-Based Microfluidic Chip.

机构信息

The Bradley Department of Electrical and Computer Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States.

Department of Cancer Biology , Wake Forest University School of Medicine , Winston-Salem , North Carolina 27157 , United States.

出版信息

Anal Chem. 2018 Jun 19;90(12):7526-7534. doi: 10.1021/acs.analchem.8b01134. Epub 2018 Jun 1.

Abstract

Circulating tumor cells (CTCs) are broadly accepted as an indicator for early cancer diagnosis and disease severity. However, there is currently no reliable method available to capture and enumerate all CTCs as most systems require either an initial CTC isolation or antibody-based capture for CTC enumeration. Many size-based CTC detection and isolation microfluidic platforms have been presented in the past few years. Here we describe a new size-based, multiple-row cancer cell entrapment device that captured LNCaP-C4-2 prostate cancer cells with >95% efficiency when in spiked mouse whole blood at ∼50 cells/mL. The capture ratio and capture limit on each row was optimized and it was determined that trapping chambers with five or six rows of micro constriction channels were needed to attain a capture ratio >95%. The device was operated under a constant pressure mode at the inlet for blood samples which created a uniform pressure differential across all the microchannels in this array. When the cancer cells deformed in the constriction channel, the blood flow temporarily slowed down. Once inside the trapping chamber, the cancer cells recovered their original shape after the deformation created by their passage through the constriction channel. The CTCs reached the cavity region of the trapping chamber, such that the blood flow in the constriction channel resumed. On the basis of this principle, the CTCs will be captured by this high-throughput entrapment chip (CTC-HTECH), thus confirming the potential for our CTC-HTECH to be used for early stage CTC enrichment and entrapment for clinical diagnosis using liquid biopsies.

摘要

循环肿瘤细胞 (CTC) 被广泛认为是癌症早期诊断和疾病严重程度的指标。然而,目前还没有可靠的方法来捕获和计数所有的 CTC,因为大多数系统要么需要初始 CTC 分离,要么需要抗体捕获来进行 CTC 计数。过去几年已经提出了许多基于大小的 CTC 检测和分离微流控平台。在这里,我们描述了一种新的基于大小的、多排癌细胞捕获装置,当在约 50 个细胞/mL 的掺入小鼠全血中时,该装置能够以 >95%的效率捕获 LNCaP-C4-2 前列腺癌细胞。优化了每排的捕获比和捕获极限,确定需要 5 排或 6 排微收缩通道的捕获室才能达到 >95%的捕获比。该装置在入口处以恒定压力模式操作血液样本,在该阵列中的所有微通道中产生均匀的压力差。当癌细胞在收缩通道中变形时,血流暂时减慢。一旦进入捕获室,癌细胞在通过收缩通道产生的变形后恢复其原始形状。CTC 到达捕获室的腔区域,使得收缩通道中的血流恢复。基于这一原理,CTC 将被这种高通量捕获芯片(CTC-HTECH)捕获,从而证实了我们的 CTC-HTECH 有潜力用于临床诊断中使用液体活检进行早期 CTC 富集和捕获。

相似文献

6
Isolation of circulating tumor cells using a microvortex-generating herringbone-chip.利用微涡旋产生的人字形芯片分离循环肿瘤细胞。
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18392-7. doi: 10.1073/pnas.1012539107. Epub 2010 Oct 7.

引用本文的文献

2
Bioprinted research models of urological malignancy.泌尿外科恶性肿瘤的生物打印研究模型
Exploration (Beijing). 2024 Feb 20;4(4):20230126. doi: 10.1002/EXP.20230126. eCollection 2024 Aug.
5
The Applications and Challenges of the Development of Tumor Microenvironment Chips.肿瘤微环境芯片开发的应用与挑战
Cell Mol Bioeng. 2022 Dec 26;16(1):3-21. doi: 10.1007/s12195-022-00755-7. eCollection 2023 Feb.
6
Molecular Biomarkers in Cancer.癌症中的分子生物标志物
Biomolecules. 2022 Jul 23;12(8):1021. doi: 10.3390/biom12081021.
7
Application of Microfluidics in Detection of Circulating Tumor Cells.微流控技术在循环肿瘤细胞检测中的应用。
Front Bioeng Biotechnol. 2022 May 12;10:907232. doi: 10.3389/fbioe.2022.907232. eCollection 2022.
9
10
Microfluidic Systems for Cancer Diagnosis and Applications.用于癌症诊断及应用的微流控系统
Micromachines (Basel). 2021 Oct 31;12(11):1349. doi: 10.3390/mi12111349.

本文引用的文献

3
Separation of cancer cells using vortical microfluidic flows.利用涡旋微流体流动分离癌细胞。
Biomicrofluidics. 2018 Feb 5;12(1):014112. doi: 10.1063/1.5009037. eCollection 2018 Jan.
7
Integrating liquid biopsies into the management of cancer.将液体活检纳入癌症管理中。
Nat Rev Clin Oncol. 2017 Sep;14(9):531-548. doi: 10.1038/nrclinonc.2017.14. Epub 2017 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验