Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Cell Rep. 2018 May 22;23(8):2283-2291. doi: 10.1016/j.celrep.2018.04.075.
Impulses generated by a multicellular, bioelectric signaling center termed the sinoatrial node (SAN) stimulate the rhythmic contraction of the heart. The SAN consists of a network of electrochemically oscillating pacemaker cells encased in a heterogeneous connective tissue microenvironment. Although the cellular composition of the SAN has been a point of interest for more than a century, the biological processes that drive the tissue-level assembly of the cells within the SAN are unknown. Here, we demonstrate that the SAN's structural features result from a developmental process during which mesenchymal cells derived from a multipotent progenitor structure, the proepicardium, integrate with and surround pacemaker myocardium. This process actively remodels the forming SAN and is necessary for sustained electrogenic signal generation and propagation. Collectively, these findings provide experimental evidence for how the microenvironmental architecture of the SAN is patterned and demonstrate that proper cellular arrangement is critical for cardiac pacemaker biorhythmicity.
由被称为窦房结 (SAN) 的多细胞生物电信号中心产生的冲动刺激心脏有节奏地收缩。SAN 由一个电化学振荡起搏细胞网络组成,这些细胞被包裹在异质的结缔组织微环境中。尽管 SAN 的细胞组成已经引起了一个多世纪的关注,但驱动 SAN 内细胞组织水平组装的生物学过程尚不清楚。在这里,我们证明了 SAN 的结构特征是由一个发育过程产生的,在此过程中,多能前体细胞结构——心外膜衍生的间充质细胞与起搏心肌整合并环绕。这个过程积极地重塑形成中的 SAN,是持续产生和传播电信号所必需的。总的来说,这些发现为 SAN 的微环境结构是如何形成的提供了实验证据,并表明适当的细胞排列对于心脏起搏生物节律性至关重要。