Suppr超能文献

运用分子对接预测具有药理学分类的设计类精神药物的阿片受体结合亲和力。

Predicting opioid receptor binding affinity of pharmacologically unclassified designer substances using molecular docking.

机构信息

Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, United States of America.

出版信息

PLoS One. 2018 May 24;13(5):e0197734. doi: 10.1371/journal.pone.0197734. eCollection 2018.

Abstract

Opioids represent a highly-abused and highly potent class of drugs that have become a significant threat to public safety. Often there are little to no pharmacological and toxicological data available for new, illicitly used and abused opioids, and this has resulted in a growing number of serious adverse events, including death. The large influx of new synthetic opioids permeating the street-drug market, including fentanyl and fentanyl analogs, has generated the need for a fast and effective method to evaluate the risk a substance poses to public safety. In response, the US FDA's Center for Drug Evaluation and Research (CDER) has developed a rapidly-deployable, multi-pronged computational approach to assess a drug's risk to public health. A key component of this approach is a molecular docking model to predict the binding affinity of biologically uncharacterized fentanyl analogs to the mu opioid receptor. The model was validated by correlating the docking scores of structurally diverse opioids with experimentally determined binding affinities. Fentanyl derivatives with sub-nanomolar binding affinity at the mu receptor (e.g. carfentanil and lofentanil) have significantly lower binding scores, while less potent fentanyl derivatives have increased binding scores. The strong correlation between the binding scores and the experimental binding affinities suggests that this approach can be used to accurately predict the binding strength of newly identified fentanyl analogs at the mu receptor in the absence of in vitro data and may assist in the temporary scheduling of those substances that pose a risk to public safety.

摘要

阿片类药物是一类极易被滥用且效力很强的药物,已成为对公共安全的重大威胁。通常,对于新的、非法使用和滥用的阿片类药物,几乎没有药理学和毒理学数据,这导致了越来越多的严重不良事件,包括死亡。大量新型合成阿片类药物(包括芬太尼及其类似物)充斥街头毒品市场,这使得人们需要一种快速有效的方法来评估物质对公共安全构成的风险。有鉴于此,美国食品药品监督管理局(FDA)的药品评价和研究中心(CDER)开发了一种快速部署的、多管齐下的计算方法,以评估药物对公共健康的风险。该方法的一个关键组成部分是一种分子对接模型,用于预测生物特征尚未明确的芬太尼类似物与μ阿片受体的结合亲和力。该模型通过将结构多样的阿片类药物的对接分数与实验确定的结合亲和力进行相关性验证。对μ受体具有亚纳摩尔结合亲和力的芬太尼衍生物(如卡芬太尼和左啡诺)的结合分数明显较低,而效力较弱的芬太尼衍生物的结合分数则增加。结合分数与实验结合亲和力之间的强相关性表明,在没有体外数据的情况下,该方法可用于准确预测新鉴定的芬太尼类似物在μ受体上的结合强度,并且可能有助于对那些对公共安全构成威胁的物质进行临时管制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02f6/5967713/4a7e42917bd3/pone.0197734.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验