Suppr超能文献

相移反馈控制用于介电泳微操作。

Phase-shift feedback control for dielectrophoretic micromanipulation.

机构信息

Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo Namesti 13, 121 35, Prague, Czech Republic.

出版信息

Lab Chip. 2018 Jun 12;18(12):1793-1801. doi: 10.1039/c8lc00113h.

Abstract

In this paper, we present a novel approach to noncontact micromanipulation by controlled dielectrophoresis (DEP). To steer micro-objects in the desired way, the solutions reported in the literature use either DEP cages or amplitude modulation of the voltages applied to the electrodes. In contrast, we modulate the phases, that is, we control the phase shifts of the voltages applied to the electrodes, which simplifies the hardware implementation and extends the set of feasible forces. Furthermore, we introduce an innovative micro-electrode array layout, composed of four sectors with parallel (colinear) electrodes, which is capable of inducing an arbitrary movement in the manipulation area and is easy to fabricate using just an affordable one-layer technology. We then propose a closed-loop cascade control strategy based on real-time numerical optimization and deploy it to our experimental set-up. Numerical simulations and laboratory experiments demonstrate the manipulation capabilities such as positioning and steering of one or several microscopic objects (microspheres with a diameter of 50 μm) and even bringing two objects together and then separating them again. The results from simulations and experiments are compared and the positioning accuracy is evaluated in the whole manipulation area. The error in position is 8 μm in the worst case, which corresponds to 16% of the microsphere size or 0.7% of the manipulation range.

摘要

本文提出了一种通过控制介电泳(DEP)进行非接触微操作的新方法。为了以期望的方式引导微物体,文献中报道的解决方案要么使用 DEP 笼,要么使用施加到电极上的电压的幅度调制。相比之下,我们调制相位,也就是说,我们控制施加到电极上的电压的相移,这简化了硬件实现并扩展了可行力的集合。此外,我们引入了一种创新的微电极阵列布局,由四个具有平行(共线)电极的扇区组成,能够在操作区域中产生任意运动,并且易于使用仅具有可承受的单层技术制造。然后,我们提出了一种基于实时数值优化的闭环级联控制策略,并将其部署到我们的实验装置中。数值模拟和实验室实验证明了操纵能力,例如一个或多个微小物体(直径为 50μm 的微球)的定位和转向,甚至可以将两个物体聚集在一起,然后再次将它们分开。比较了模拟和实验的结果,并在整个操作区域内评估了定位精度。最坏情况下的位置误差为 8μm,对应于微球尺寸的 16%或操作范围的 0.7%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验