Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA.
Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Hum Genet. 2018 May;137(5):413-425. doi: 10.1007/s00439-018-1893-0. Epub 2018 May 24.
Although Genome Wide Association Studies (GWAS) have led to many valuable insights into the genetic bases of common diseases over the past decade, the issue of missing heritability has surfaced, as the discovered main effect genetic variants found to date do not account for much of a trait's predicted genetic component. We present a workflow, integrating epigenomics and topologically associating domain data, aimed at discovering trait-associated SNP pairs from GWAS where neither SNP achieved independent genome-wide significance. Each analyzed SNP pair consists of one SNP in a putative active enhancer and another SNP in a putative physically interacting gene promoter in a trait-relevant tissue. As a proof-of-principle case study, we used this approach to identify focused collections of SNP pairs that we analyzed in three independent Type 2 diabetes (T2D) GWAS. This approach led us to discover 35 significant SNP pairs, encompassing both novel signals and signals for which we have found orthogonal support from other sources. Nine of these pairs are consistent with eQTL results, two are consistent with our own capture C experiments, and seven involve signals supported by recent T2D literature.
尽管过去十年的全基因组关联研究 (GWAS) 为了解常见疾病的遗传基础提供了许多有价值的见解,但遗传缺失问题已经浮出水面,因为迄今为止发现的主要效应遗传变异并不能解释该特征预测遗传成分的大部分。我们提出了一种工作流程,结合了表观基因组学和拓扑关联结构域数据,旨在从 GWAS 中发现 SNP 对,这些 SNP 对中没有一个 SNP 达到独立的全基因组显著水平。每个分析的 SNP 对由一个假定活性增强子中的 SNP 和一个在相关组织中假定物理相互作用基因启动子中的另一个 SNP 组成。作为一个原理验证案例研究,我们使用这种方法来识别 SNP 对的重点集合,我们在三个独立的 2 型糖尿病 (T2D) GWAS 中分析了这些 SNP 对。这种方法使我们发现了 35 个显著的 SNP 对,其中包括新的信号和我们从其他来源找到的正交支持的信号。这些 SNP 对中有 9 个与 eQTL 结果一致,2 个与我们自己的捕获 C 实验一致,7 个涉及最近 T2D 文献中支持的信号。