Suppr超能文献

广义处理树模型:联合建模离散和连续变量。

Generalized Processing Tree Models: Jointly Modeling Discrete and Continuous Variables.

机构信息

Department of Psychology, University of Mannheim, L 13, 17, Mannheim, 68161, Germany.

出版信息

Psychometrika. 2018 Dec;83(4):893-918. doi: 10.1007/s11336-018-9622-0. Epub 2018 May 24.

Abstract

Multinomial processing tree models assume that discrete cognitive states determine observed response frequencies. Generalized processing tree (GPT) models extend this conceptual framework to continuous variables such as response times, process-tracing measures, or neurophysiological variables. GPT models assume finite-mixture distributions, with weights determined by a processing tree structure, and continuous components modeled by parameterized distributions such as Gaussians with separate or shared parameters across states. We discuss identifiability, parameter estimation, model testing, a modeling syntax, and the improved precision of GPT estimates. Finally, a GPT version of the feature comparison model of semantic categorization is applied to computer-mouse trajectories.

摘要

多项加工树模型假设离散的认知状态决定了观察到的反应频率。广义加工树(GPT)模型将这一概念框架扩展到了连续变量,如反应时间、过程追踪测量或神经生理变量。GPT 模型假设有限混合分布,权重由加工树结构决定,连续成分由参数化分布建模,如状态之间具有单独或共享参数的高斯分布。我们讨论了可识别性、参数估计、模型检验、建模语法以及 GPT 估计的精度提高。最后,将语义分类的特征比较模型的 GPT 版本应用于计算机鼠标轨迹。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验