Suppr超能文献

在感知单词识别方面的表现是由离散状态介导的。

Performance on perceptual word identification is mediated by discrete states.

作者信息

Swagman April R, Province Jordan M, Rouder Jeffrey N

机构信息

Department of Psychological Sciences, University of Missouri, 210 McAlester Hall, Columbia, MO, 65211-2500, USA,

出版信息

Psychon Bull Rev. 2015 Feb;22(1):265-73. doi: 10.3758/s13423-014-0670-x.

Abstract

We contrast predictions from discrete-state models of all-or-none information loss with signal-detection models of graded strength for the identification of briefly flashed English words. Previous assessments have focused on whether ROC curves are straight or not, which is a test of a discrete-state model where detection leads to the highest confidence response with certainty. We along with many others argue this certainty assumption is too constraining, and, consequently, the straight-line ROC test is too stringent. Instead, we assess a core property of discrete-state models, conditional independence, where the pattern of responses depends only on which state is entered. The conditional independence property implies that confidence ratings are a mixture of detect and guess state responses, and that stimulus strength factors, the duration of the flashed word in this report, affect only the probability of entering a state and not responses conditional on a state. To assess this mixture property, 50 participants saw words presented briefly on a computer screen at three variable flash durations followed by either a two-alternative confidence ratings task or a yes-no confidence ratings task. Comparable discrete-state and signal-detection models were fit to the data for each participant and task. The discrete-state models outperformed the signal detection models for 90 % of participants in the two-alternative task and for 68 % of participants in the yes-no task. We conclude discrete-state models are viable for predicting performance across stimulus conditions in a perceptual word identification task.

摘要

我们将全或无信息损失的离散状态模型的预测与分级强度的信号检测模型进行对比,以识别短暂闪现的英语单词。以往的评估集中在ROC曲线是否为直线,这是对离散状态模型的一种测试,在该模型中,检测会确定性地导致最高置信度响应。我们和其他许多人认为,这种确定性假设过于苛刻,因此,直线ROC测试过于严格。相反,我们评估离散状态模型的一个核心属性——条件独立性,即响应模式仅取决于进入的状态。条件独立性属性意味着置信度评级是检测和猜测状态响应的混合,并且刺激强度因素(本报告中闪现单词的持续时间)仅影响进入某一状态的概率,而不影响基于某一状态的响应。为了评估这种混合属性,50名参与者在电脑屏幕上以三种不同的闪现持续时间短暂看到单词,随后进行二选一置信度评级任务或是/否置信度评级任务。针对每位参与者和任务,将可比的离散状态模型和信号检测模型与数据进行拟合。在二选一任务中,90%的参与者以及在是/否任务中68%的参与者,离散状态模型的表现优于信号检测模型。我们得出结论,在感知单词识别任务中,离散状态模型对于预测跨刺激条件的表现是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验