Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
Cell Oncol (Dordr). 2018 Aug;41(4):343-351. doi: 10.1007/s13402-018-0383-7. Epub 2018 May 24.
Many of the hallmarks of cancer are not inherently unique to cancer, but rather represent a re-enactment of normal host responses and activities. A vivid example is aerobic glycolysis ('Warburg effect'), which is used not only by cancer cells but also by normal cells that undergo rapid proliferation. A common feature of this metabolic adaptation is a shift in the expression of pyruvate kinase (PK) isoform M1 to isoform M2. Here, we highlight the key role of PKM2 in shifting cancer metabolism between ATP production and biosynthetic processes. Since anabolic processes are highly energy dependent, the fate of glucose in energy production versus the contribution of carbon in biosynthetic processes needs to be finely synchronised. PKM2 acts to integrate cellular signalling and allosteric regulation of metabolites in order to align metabolic activities with the changing needs of the cell.
The central role of PKM2 in directing the flow of carbon between catabolic (ATP-producing) and anabolic processes provides unique opportunities for extending the therapeutic window of currently available and/or novel anti-neoplastic agents.
许多癌症的标志性特征并非癌症所特有,而是正常宿主反应和活动的重演。一个生动的例子是有氧糖酵解(“Warburg 效应”),它不仅被癌细胞使用,也被经历快速增殖的正常细胞使用。这种代谢适应的一个共同特征是丙酮酸激酶(PK)同工酶 M1 向同工酶 M2 的表达转移。在这里,我们强调了 PKM2 在将癌症代谢从 ATP 生成转移到生物合成过程中的关键作用。由于合成代谢过程高度依赖能量,因此需要精细地协调葡萄糖在能量产生和生物合成过程中的碳贡献中的命运。PKM2 作用是整合细胞信号和代谢物的变构调节,以使代谢活动与细胞不断变化的需求保持一致。
PKM2 在指导碳从分解代谢(产生 ATP)到合成代谢过程中的流动方面的核心作用,为扩展现有和/或新型抗肿瘤药物的治疗窗口提供了独特的机会。