Suppr超能文献

利用卡尔曼滤波器从皮肤温度、热通量和心率估算核心体温。

Estimation of core body temperature from skin temperature, heat flux, and heart rate using a Kalman filter.

机构信息

Biophysics and Biomedical Modeling Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Natick, MA, 01760-5007, USA.

出版信息

Comput Biol Med. 2018 Aug 1;99:1-6. doi: 10.1016/j.compbiomed.2018.05.021. Epub 2018 May 18.

Abstract

Core body temperature (T) is a key physiological metric of thermal heat-strain yet it remains difficult to measure non-invasively in the field. This work used combinations of observations of skin temperature (T), heat flux (HF), and heart rate (HR) to accurately estimate T using a Kalman Filter (KF). Data were collected from eight volunteers (age 22 ± 4 yr, height 1.75 ± 0.10 m, body mass 76.4 ± 10.7 kg, and body fat 23.4 ± 5.8%, mean ± standard deviation) while walking at two different metabolic rates (∼350 and ∼550 W) under three conditions (warm: 25 °C, 50% relative humidity (RH); hot-humid: 35 °C, 70% RH; and hot-dry: 40 °C, 20% RH). Skin temperature and HF data were collected from six locations: pectoralis, inner thigh, scapula, sternum, rib cage, and forehead. Kalman filter variables were learned via linear regression and covariance calculations between T and T, HF, and HR. Root mean square error (RMSE) and bias were calculated to identify the best performing models. The pectoralis (RMSE 0.18 ± 0.04 °C; bias -0.01 ± 0.09 °C), rib (RMSE 0.18 ± 0.09 °C; bias -0.03 ± 0.09 °C), and sternum (RMSE 0.20 ± 0.10 °C; bias -0.04 ± 0.13 °C) were found to have the lowest error values when using T, HF, and HR but, using only two of these measures provided similar accuracy.

摘要

核心体温(T)是热应激生理热负荷的关键生理指标,但在野外仍难以进行非侵入式测量。本研究使用皮肤温度(T)、热通量(HF)和心率(HR)的观测组合,使用卡尔曼滤波器(KF)准确估计 T。从 8 名志愿者(年龄 22±4 岁,身高 1.75±0.10 米,体重 76.4±10.7 千克,体脂 23.4±5.8%,平均值±标准差)收集数据,在三种条件下(温暖:25°C,50%相对湿度(RH);湿热:35°C,70%RH;干热:40°C,20%RH)以两种不同代谢率(约 350 和约 550 W)行走。从六个部位采集皮肤温度和 HF 数据:胸肌、大腿内侧、肩胛骨、胸骨、肋骨和额头。卡尔曼滤波器变量通过 T 与 T、HF 和 HR 之间的线性回归和协方差计算进行学习。均方根误差(RMSE)和偏差用于确定性能最佳的模型。胸肌(RMSE 0.18±0.04°C;偏差-0.01±0.09°C)、肋骨(RMSE 0.18±0.09°C;偏差-0.03±0.09°C)和胸骨(RMSE 0.20±0.10°C;偏差-0.04±0.13°C)在使用 T、HF 和 HR 时具有最低的误差值,但仅使用其中两项测量值即可提供相似的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验