Suppr超能文献

使用 Kenzen 可穿戴设备无创预测核心体温的算法准确性。

Accuracy of Algorithm to Non-Invasively Predict Core Body Temperature Using the Kenzen Wearable Device.

机构信息

Kenzen, Inc., Kansas City, MO 64108, USA.

Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.

出版信息

Int J Environ Res Public Health. 2021 Dec 13;18(24):13126. doi: 10.3390/ijerph182413126.

Abstract

With climate change increasing global temperatures, more workers are exposed to hotter ambient temperatures that exacerbate risk for heat injury and illness. Continuously monitoring core body temperature (T) can help workers avoid reaching unsafe T. However, continuous T measurements are currently cost-prohibitive or invasive for daily use. Here, we show that Kenzen's wearable device can accurately predict T compared to gold standard T measurements (rectal probe or gastrointestinal pill). Data from four different studies ( = 52 trials; 27 unique subjects; >4000 min data) were used to develop and validate Kenzen's machine learning T algorithm, which uses subject's real-time physiological data combined with baseline anthropometric data. We show Kenzen's T algorithm meets pre-established accuracy criteria compared to gold standard T: mean absolute error = 0.25 °C, root mean squared error = 0.30 °C, Pearson correlation = 0.94, standard error of the measurement = 0.18 °C, and mean bias = 0.07 °C. Overall, the Kenzen T algorithm is accurate for a wide range of T, environmental temperatures (13-43 °C), light to vigorous heart rate zones, and both biological sexes. To our knowledge, this is the first study demonstrating a wearable device can accurately predict T in real-time, thus offering workers protection from heat injuries and illnesses.

摘要

随着气候变化导致全球气温上升,越来越多的工人暴露在更高的环境温度下,这加剧了他们中暑和患病的风险。持续监测核心体温(T)有助于工人避免体温过高。然而,目前连续测量 T 的方法在成本上或在日常使用中存在侵入性问题。在这里,我们展示了 Kenzen 的可穿戴设备可以与金标准 T 测量(直肠探头或胃肠药丸)相比,准确预测 T。来自四项不同研究的数据(= 52 次试验;27 位独特的受试者;>4000 分钟的数据)被用于开发和验证 Kenzen 的机器学习 T 算法,该算法使用受试者的实时生理数据结合基线人体测量数据。我们表明,与金标准 T 相比,Kenzen 的 T 算法符合预先设定的准确性标准:平均绝对误差=0.25°C,均方根误差=0.30°C,皮尔逊相关系数=0.94,测量标准误差=0.18°C,平均偏差=0.07°C。总的来说,Kenzen 的 T 算法在广泛的 T、环境温度(13-43°C)、从轻到剧烈的心率区间以及两性中都具有较高的准确性。据我们所知,这是第一项证明可穿戴设备可以实时准确预测 T 的研究,从而为工人提供了中暑和患病的保护。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f406/8701050/7f7891a0be32/ijerph-18-13126-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验