Suppr超能文献

缺失数据的处理:报告、分析、可重复性和可复制性。

The treatment of incomplete data: Reporting, analysis, reproducibility, and replicability.

机构信息

Department of Statistics, University of Connecticut, 215 Glenbrook Road, Unit 4120, Storrs, CT 06269-4120, United States.

Department of Statistics, University of Connecticut, 215 Glenbrook Road, Unit 4120, Storrs, CT 06269-4120, United States.

出版信息

Soc Sci Med. 2018 Jul;209:169-173. doi: 10.1016/j.socscimed.2018.05.037. Epub 2018 May 21.

Abstract

Proper analysis and reporting of incomplete data continues to be a challenging task for practitioners from various research areas. Recently Nguyen, Strazdins, Nicholson and Cooklin (NSNC; 2018) evaluated the impact of complete case analysis and multiple imputation in studies of parental employment and health. Their work joins interdisciplinary efforts to educate and motivate scientists across the research community to use principled statistical methods when analyzing incomplete data. Although we fully support and encourage work in parallel to NSNC's, we also think that further actions should be taken by the research community to improve current practices. In this commentary, we discuss some aspects and misconceptions related to analysis of incomplete data, in particular multiple imputation. In our view, the missing data problem is part of a larger problem of research reproducibility and replicability today. Thus, we believe that improving analysis and reporting of incomplete data will make reproducibility and replicability efforts easier. We also provide a brief checklist of recommendations which could be used by members of the scientific community, including practitioners, journal editors, and reviewers to set higher publication standards.

摘要

对于来自不同研究领域的从业者来说,正确分析和报告不完整数据仍然是一项具有挑战性的任务。最近,Nguyen、Strazdins、Nicholson 和 Cooklin(NSNC;2018 年)评估了完全案例分析和多重插补在父母就业和健康研究中的影响。他们的工作加入了跨学科努力,教育和激励整个研究界的科学家在分析不完整数据时使用有原则的统计方法。虽然我们完全支持和鼓励与 NSNC 并行的工作,但我们也认为研究界应该采取进一步的行动来改进当前的做法。在这篇评论中,我们讨论了与不完整数据分析相关的一些方面和误解,特别是多重插补。在我们看来,缺失数据问题是当今研究可重复性和可复制性更大问题的一部分。因此,我们认为改进不完整数据的分析和报告将使可重复性和可复制性工作变得更加容易。我们还提供了一份简短的建议清单,供科学界成员(包括从业者、期刊编辑和审稿人)使用,以设定更高的出版标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验