Department of Genetics, Davison Life Sciences Building, University of Georgia, Athens, GA, 30602, USA.
Department of Chemical Engineering, University of Washington, Seattle, WA, 98105, USA.
J Ind Microbiol Biotechnol. 2018 Aug;45(8):753-763. doi: 10.1007/s10295-018-2049-x. Epub 2018 May 28.
A limitation to the engineering of cellulolytic thermophiles is the availability of functional, thermostable (≥ 60 °C) replicating plasmid vectors for rapid expression and testing of genes that provide improved or novel fuel molecule production pathways. A series of plasmid vectors for genetic manipulation of the cellulolytic thermophile Caldicellulosiruptor bescii has recently been extended to Clostridium thermocellum, another cellulolytic thermophile that very efficiently solubilizes plant biomass and produces ethanol. While the C. bescii pBAS2 replicon on these plasmids is thermostable, the use of homologous promoters, signal sequences and genes led to undesired integration into the bacterial chromosome, a result also observed with less thermostable replicating vectors. In an attempt to overcome undesired plasmid integration in C. thermocellum, a deletion of recA was constructed. As expected, C. thermocellum ∆recA showed impaired growth in chemically defined medium and an increased susceptibility to UV damage. Interestingly, we also found that recA is required for replication of the C. bescii thermophilic plasmid pBAS2 in C. thermocellum, but it is not required for replication of plasmid pNW33N. In addition, the C. thermocellum recA mutant retained the ability to integrate homologous DNA into the C. thermocellum chromosome. These data indicate that recA can be required for replication of certain plasmids, and that a recA-independent mechanism exists for the integration of homologous DNA into the C. thermocellum chromosome. Understanding thermophilic plasmid replication is not only important for engineering of these cellulolytic thermophiles, but also for developing genetic systems in similar new potentially useful non-model organisms.
纤维素分解嗜热菌的工程设计受到限制,因为缺乏功能强大、热稳定(≥60°C)的复制质粒载体,无法快速表达和测试提供改进或新型燃料分子生产途径的基因。最近,一系列用于纤维素分解嗜热菌 Caldicellulosiruptor bescii 遗传操作的质粒载体已扩展到另一种纤维素分解嗜热菌 Clostridium thermocellum,后者非常有效地溶解植物生物质并生产乙醇。虽然这些质粒上的 C. bescii pBAS2 复制子是热稳定的,但使用同源启动子、信号序列和基因会导致不期望的整合到细菌染色体中,这一结果也在不太耐热的复制载体中观察到。为了尝试克服 C. thermocellum 中不期望的质粒整合,构建了 recA 的缺失突变体。正如预期的那样,C. thermocellum ∆recA 在化学成分确定的培养基中显示出生长受损,并且对 UV 损伤的敏感性增加。有趣的是,我们还发现 recA 是 C. bescii 嗜热质粒 pBAS2 在 C. thermocellum 中复制所必需的,但不是复制质粒 pNW33N 所必需的。此外,C. thermocellum recA 突变体保留了将同源 DNA 整合到 C. thermocellum 染色体中的能力。这些数据表明,recA 可以是某些质粒复制所必需的,并且存在一种独立于 recA 的机制将同源 DNA 整合到 C. thermocellum 染色体中。了解嗜热质粒的复制不仅对于这些纤维素分解嗜热菌的工程设计很重要,而且对于开发类似的新潜在有用的非模式生物的遗传系统也很重要。