Department of Physics, Cornell University, Ithaca, NY 14853 USA.
Department of Physics, Cornell University, Ithaca, NY 14853 USA.
Ultramicroscopy. 2018 Aug;191:56-65. doi: 10.1016/j.ultramic.2018.04.008. Epub 2018 Apr 27.
Combining multiple fast image acquisitions to mitigate scan noise and drift artifacts has proven essential for picometer precision, quantitative analysis of atomic resolution scanning transmission electron microscopy (STEM) data. For very low signal-to-noise ratio (SNR) image stacks - frequently required for undistorted imaging at liquid nitrogen temperatures - image registration is particularly delicate, and standard approaches may either fail, or produce subtly specious reconstructed lattice images. We present an approach which effectively registers and averages image stacks which are challenging due to their low-SNR and propensity for unit cell misalignments. Registering all possible image pairs in a multi-image stack leads to significant information surplus. In combination with a simple physical picture of stage drift, this enables identification of incorrect image registrations, and determination of the optimal image shifts from the complete set of relative shifts. We demonstrate the effectiveness of our approach on experimental, cryogenic STEM datasets, highlighting subtle artifacts endemic to low-SNR lattice images and how they can be avoided. High-SNR average images with information transfer out to 0.72 Å are achieved at 300 kV and with the sample cooled to near liquid nitrogen temperature.
将多个快速图像采集结合起来以减轻扫描噪声和漂移伪影,这对于皮米级精度、原子分辨率扫描透射电子显微镜(STEM)数据的定量分析来说至关重要。对于非常低的信噪比(SNR)图像堆叠——经常需要在液氮温度下进行无失真成像——图像配准特别精细,标准方法要么失败,要么产生微妙的虚假重构晶格图像。我们提出了一种方法,该方法可以有效地对由于 SNR 低且单元晶格容易错位而具有挑战性的图像堆叠进行配准和平均。在多图像堆栈中注册所有可能的图像对会导致大量信息冗余。结合阶段漂移的简单物理图像,可以识别不正确的图像配准,并从完整的相对位移集中确定最佳图像位移。我们在实验性的低温 STEM 数据集上展示了我们方法的有效性,突出了低 SNR 晶格图像特有的微妙伪影,以及如何避免这些伪影。在 300kV 下,将样品冷却至接近液氮温度,实现了高达 0.72Å 的高 SNR 平均图像,且信息传递良好。