Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France.
Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, «Equipe Labellisée Ligue Contre le Cancer», Marseille, France.
Sci Rep. 2018 May 29;8(1):8330. doi: 10.1038/s41598-018-26613-z.
The main goal of this study was to find out strategies of clinical relevance to classify patients with a pancreatic ductal adenocarcinoma (PDAC) for individualized treatments. In the present study a set of 55 patient-derived xenografts (PDX) were obtained and their transcriptome were analyzed by using an Affymetrix approach. A supervised bioinformatics-based analysis let us to classify these PDX in two main groups named E2F-highly dependent and E2F-lowly dependent. Afterwards their characterization by using a Kaplan-Meier analysis demonstrated that E2F high patients survived significantly less than E2F low patients (9.5 months vs. 16.8 months; p = 0.0066). Then we tried to establish if E2F transcriptional target levels were associated to the response to cytotoxic treatments by comparing the IC50 values of E2F high and E2F low cells after gemcitabine, 5-fluorouracil, oxaliplatin, docetaxel or irinotecan treatment, and no association was found. Then we identified an E2F inhibitor compound, named ly101-4B, and we observed that E2F-higly dependent cells were more sensitive to its treatment (IC50 of 19.4 ± 1.8 µM vs. 44.1 ± 4.4 µM; p = 0.0061). In conclusion, in this work we describe an E2F target expression-based classification that could be predictive for patient outcome, but more important, for the sensitivity of tumors to the E2F inhibitors as a treatment. Finally, we can assume that phenotypic characterization, essentially by an RNA expression analysis of the PDAC, can help to predict their clinical outcome and their response to some treatments when are rationally selected.
本研究的主要目的是找到具有临床相关性的策略,对胰腺导管腺癌(PDAC)患者进行个体化治疗。在本研究中,获得了一组 55 个患者来源的异种移植物(PDX),并使用 Affymetrix 方法分析其转录组。基于监督生物信息学的分析使我们能够将这些 PDX 分为两组,命名为 E2F-高依赖性和 E2F-低依赖性。然后,通过 Kaplan-Meier 分析对它们进行特征描述,结果表明 E2F 高患者的生存率明显低于 E2F 低患者(9.5 个月比 16.8 个月;p=0.0066)。然后,我们试图通过比较 E2F 高和 E2F 低细胞在吉西他滨、5-氟尿嘧啶、奥沙利铂、多西紫杉醇或伊立替康治疗后的 IC50 值,来确定 E2F 转录靶标水平是否与细胞毒性治疗的反应相关,没有发现相关性。然后,我们鉴定了一种 E2F 抑制剂化合物,命名为 ly101-4B,并观察到 E2F-高依赖性细胞对其治疗更为敏感(IC50 为 19.4±1.8μM 比 44.1±4.4μM;p=0.0061)。总之,在这项工作中,我们描述了一种基于 E2F 靶基因表达的分类方法,该方法可预测患者的预后,但更重要的是,可预测肿瘤对 E2F 抑制剂作为治疗药物的敏感性。最后,我们可以假设表型特征,特别是通过对 PDAC 的 RNA 表达分析,可以帮助预测它们的临床结果及其对某些治疗的反应,当这些治疗被合理选择时。