Suppr超能文献

中弓状韧带综合征患者的预测模型。

A predictive model for patients with median arcuate ligament syndrome.

机构信息

Department of Surgery, The Veterans Affairs Medical Center and George Washington University Medical Center, 50 Irving St., Washington, DC, 20422, USA.

Department of Surgery, The George Washington University Medical Center, Washington, DC, USA.

出版信息

Surg Endosc. 2018 Dec;32(12):4860-4866. doi: 10.1007/s00464-018-6240-y. Epub 2018 May 29.

Abstract

BACKGROUND

Due to the rarity of median arcuate ligament (MAL) syndrome, patient selection for surgery remains difficult. This study provides a predictive model to optimize patient selection and predict outcomes following a MAL release.

METHODS

Prospective data from patients undergoing a MAL release included demographics, radiologic studies, and SF-36 questionnaires. Successful postoperative changes in SF-36 was defined as an improvement > 10% in the total SF-36 score. A logistic regression model was used to develop a clinically applicable table to predict surgical outcomes. Celiac artery (CA) blood flow velocities were compared pre- and postoperatively and Pearson correlations were examined between velocities and SF-36 score changes.

RESULTS

42 patients underwent a laparoscopic MAL release with a mean follow-up of 28.5 ± 18.8 months. Postoperatively, all eight SF-36 scales improved significantly. The logistic regression model for predicting surgical benefit was significant (p = 0.0244) with a strong association between predictors and outcome (R = 0.36). Age and baseline CA expiratory velocity were significant predictors of improvement and predicted clinical improvement. There were significant differences between pre- and postoperative CA velocities. Postoperatively, the bodily pain scale showed the most significant increase (64%, p < 0.0001). A table was developed using age and preoperative CA expiratory velocities to predict clinical outcomes.

CONCLUSIONS

Laparoscopic MAL produces significant symptom improvement, particularly in bodily pain. This is one of the first studies that uses preoperative data to predict symptom improvement following a MAL release. Age and baseline CA expiratory velocity can be used to guide postoperative expectations in patients with MAL syndrome.

摘要

背景

由于正中弓状韧带(MAL)综合征的罕见性,手术患者的选择仍然很困难。本研究提供了一种预测模型,以优化患者选择并预测 MAL 释放后的结果。

方法

前瞻性纳入接受 MAL 松解术的患者,收集患者的人口统计学、影像学研究和 SF-36 问卷数据。将术后 SF-36 成功改善定义为总 SF-36 评分提高>10%。使用逻辑回归模型制定一个临床适用的表格来预测手术结果。比较术前和术后的腹腔动脉(CA)血流速度,并检查流速与 SF-36 评分变化之间的 Pearson 相关性。

结果

42 例患者接受了腹腔镜 MAL 松解术,平均随访 28.5±18.8 个月。术后所有八项 SF-36 量表均显著改善。预测手术获益的逻辑回归模型具有统计学意义(p=0.0244),预测因子与结果之间存在很强的关联(R=0.36)。年龄和基线 CA 呼气速度是改善的显著预测因子,并预测了临床改善。CA 流速在术前和术后有显著差异。术后,身体疼痛量表的增加最为显著(64%,p<0.0001)。根据年龄和术前 CA 呼气速度制定了一个预测临床结局的表格。

结论

腹腔镜 MAL 松解术可显著改善症状,尤其是躯体疼痛。这是第一个使用术前数据预测 MAL 松解术后症状改善的研究之一。年龄和基线 CA 呼气速度可用于指导 MAL 综合征患者的术后预期。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验