The Goldring Center for Culinary Medicine, Tulane University School of Medicine, 300 N. Broad St., Suite 102, New Orleans, LA 70119, USA.
Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, USA.
Biomed Res Int. 2018 Apr 15;2018:5051289. doi: 10.1155/2018/5051289. eCollection 2018.
Cardiovascular disease (CVD) annually claims more lives and costs more dollars than any other disease globally amid widening health disparities, despite the known significant reductions in this burden by low cost dietary changes. The world's first medical school-based teaching kitchen therefore launched CHOP-Medical Students as the largest known multisite cohort study of hands-on cooking and nutrition education versus traditional curriculum for medical students.
This analysis provides a novel integration of artificial intelligence-based machine learning (ML) with causal inference statistics. 43 ML automated algorithms were tested, with the top performer compared to triply robust propensity score-adjusted multilevel mixed effects regression panel analysis of longitudinal data. Inverse-variance weighted fixed effects meta-analysis pooled the individual estimates for competencies.
3,248 unique medical trainees met study criteria from 20 medical schools nationally from August 1, 2012, to June 26, 2017, generating 4,026 completed validated surveys. ML analysis produced similar results to the causal inference statistics based on root mean squared error and accuracy. Hands-on cooking and nutrition education compared to traditional medical school curriculum significantly improved student competencies (OR 2.14, 95% CI 2.00-2.28, < 0.001) and MedDiet adherence (OR 1.40, 95% CI 1.07-1.84, = 0.015), while reducing trainees' soft drink consumption (OR 0.56, 95% CI 0.37-0.85, = 0.007). Overall improved competencies were demonstrated from the initial study site through the scale-up of the intervention to 10 sites nationally ( < 0.001).
This study provides the first machine learning-augmented causal inference analysis of a multisite cohort showing hands-on cooking and nutrition education for medical trainees improves their competencies counseling patients on nutrition, while improving students' own diets. This study suggests that the public health and medical sectors can unite population health management and precision medicine for a sustainable model of next-generation health systems providing effective, equitable, accessible care beginning with reversing the CVD epidemic.
心血管疾病(CVD)每年导致的死亡人数和花费的资金超过其他任何疾病,全球范围内健康差距不断扩大,尽管通过低成本的饮食改变已经显著降低了这种负担。因此,世界上第一所医学院开设的教学厨房推出了“CHOP-医学生”,这是一项针对医学生的动手烹饪和营养教育与传统课程的最大规模已知多站点队列研究。
本分析提供了基于人工智能的机器学习(ML)与因果推理统计的新颖整合。测试了 43 种 ML 自动算法,将表现最佳的算法与三重稳健倾向评分调整的多层次混合效应回归面板分析进行比较,以分析纵向数据。逆方差加权固定效应荟萃分析汇总了个人能力的估计值。
2012 年 8 月 1 日至 2017 年 6 月 26 日,来自全国 20 所医学院的 3248 名独特的医学生符合研究标准,共产生 4026 份完整有效的调查。ML 分析的结果与基于均方根误差和准确性的因果推理统计相似。与传统医学课程相比,动手烹饪和营养教育显著提高了学生的能力(OR 2.14,95%CI 2.00-2.28, < 0.001)和 MedDiet 依从性(OR 1.40,95%CI 1.07-1.84, = 0.015),同时减少了学生的软饮料消费(OR 0.56,95%CI 0.37-0.85, = 0.007)。从最初的研究地点到全国 10 个地点的干预措施扩大,整体能力得到了提高( < 0.001)。
本研究首次提供了多站点队列的机器学习增强因果推理分析,表明医学生的动手烹饪和营养教育提高了他们为患者提供营养咨询的能力,同时改善了学生自己的饮食。本研究表明,公共卫生和医疗部门可以联合进行人口健康管理和精准医学,为提供有效、公平、可及的护理提供可持续的下一代健康系统模式,从扭转 CVD 流行开始。