Department of Electrical and Computer Engineering, College of Engineering, University of Arizona, Tucson, AZ.
Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
J Clin Sleep Med. 2018 Jun 15;14(6):1063-1069. doi: 10.5664/jcsm.7182.
This study evaluated a novel artificial neural network (ANN) based sleep-disordered breathing (SDB) screening tool incorporating nocturnal pulse oximetry with demographic, anatomic, and clinical data. The tool was compatible with 6 categories of apnea-hypopnea index (AHI) with 4% oxyhemoglobin desaturation threshold, ≥ 5, 10, 15, 20, 25, and 30 events/h.
Using a general population dataset, the training set included 2,280 subjects, whereas the test set included 470 subjects. The input of this tool was a set of 22 variables. The tool had six neural network models for each AHI threshold. Several metrics were explored to evaluate the performance of the tool: area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value, negative predictive value, and 95% confidence interval (CI).
The AUC was 0.904, 0.912, 0.913, 0.926, 0.930, and 0.954, respectively, with models of AHI ≥ 5, 10, 15, 20, 25, and 30 events/h thresholds. The sensitivities of all neural network models were higher than 95%. The AHI ≥ 30 events/h model had the maximum sensitivity: 98.31% (95% CI: 95.01%-100%).
The results of this study suggested that the ANN based SDB screening tool can be used to identify the presence or absence of SDB. Future validation should be performed in other populations to determine the practicability of this screening tool in sleep clinics and other at-risk populations.
本研究评估了一种新型的人工神经网络(ANN)睡眠呼吸障碍(SDB)筛查工具,该工具将夜间脉搏血氧饱和度与人口统计学、解剖学和临床数据相结合。该工具与 4%氧合血红蛋白去饱和阈值的 6 类呼吸暂停低通气指数(AHI)兼容,≥ 5、10、15、20、25 和 30 事件/小时。
使用一般人群数据集,训练集包括 2280 名受试者,而测试集包括 470 名受试者。该工具的输入是一组 22 个变量。该工具为每个 AHI 阈值有六个神经网络模型。探讨了几种指标来评估该工具的性能:接受者操作特征曲线下的面积(AUC)、敏感性、特异性、阳性预测值、阴性预测值和 95%置信区间(CI)。
AHI≥5、10、15、20、25 和 30 事件/小时阈值的 AUC 分别为 0.904、0.912、0.913、0.926、0.930 和 0.954。所有神经网络模型的敏感性均高于 95%。AHI≥30 事件/小时模型的敏感性最高:98.31%(95%CI:95.01%-100%)。
本研究结果表明,基于 ANN 的 SDB 筛查工具可用于识别 SDB 的存在或不存在。应在其他人群中进行进一步验证,以确定该筛查工具在睡眠诊所和其他高危人群中的实用性。