Martial Benjamin, Lefèvre Thierry, Auger Michèle
Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada.
Biophys Rev. 2018 Aug;10(4):1133-1149. doi: 10.1007/s12551-018-0427-2. Epub 2018 May 31.
It is well established that amyloid proteins play a primary role in neurodegenerative diseases. Alzheimer's, Parkinson's, type II diabetes, and Creutzfeldt-Jakob's diseases are part of a wider family encompassing more than 50 human pathologies related to aggregation of proteins. Although this field of research is thoroughly investigated, several aspects of fibrillization remain misunderstood, which in turn slows down, or even impedes, advances in treating and curing amyloidoses. To solve this problem, several research groups have chosen to focus on short fragments of amyloid proteins, sequences that have been found to be of great importance for the amyloid formation process. Studying short peptides allows bypassing the complexity of working with full-length proteins and may provide important information relative to critical segments of amyloid proteins. To this end, efficient biophysical tools are required. In this review, we focus on two essential types of spectroscopic techniques, i.e., vibrational spectroscopy and its derivatives (conventional Raman scattering, deep-UV resonance Raman (DUVRR), Raman optical activity (ROA), surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS), infrared (IR) absorption spectroscopy, vibrational circular dichroism (VCD)) and solid-state nuclear magnetic resonance (ssNMR). These techniques revealed powerful to provide a better atomic and molecular comprehension of the amyloidogenic process and fibril structure. This review aims at underlining the information that these techniques can provide and at highlighting their strengths and weaknesses when studying amyloid fragments. Meaningful examples from the literature are provided for each technique, and their complementarity is stressed for the kinetic and structural characterization of amyloid fibril formation.
众所周知,淀粉样蛋白在神经退行性疾病中起主要作用。阿尔茨海默病、帕金森病、II型糖尿病和克雅氏病属于一个更广泛的疾病家族,其中包含50多种与蛋白质聚集相关的人类疾病。尽管该研究领域已得到充分调查,但纤维化的几个方面仍未被完全理解,这反过来又减缓甚至阻碍了淀粉样变性疾病治疗和治愈方面的进展。为了解决这个问题,几个研究小组选择专注于淀粉样蛋白的短片段,这些序列已被发现对淀粉样蛋白形成过程非常重要。研究短肽可以避开处理全长蛋白质的复杂性,并可能提供与淀粉样蛋白关键片段相关的重要信息。为此,则需要高效的生物物理工具。在这篇综述中,我们聚焦于两种重要的光谱技术,即振动光谱及其衍生技术(传统拉曼散射、深紫外共振拉曼光谱(DUVRR)、拉曼光学活性(ROA)、表面增强拉曼光谱(SERS)、针尖增强拉曼光谱(TERS)、红外(IR)吸收光谱、振动圆二色性(VCD))以及固态核磁共振(ssNMR)。这些技术已显示出强大的功能,可以更好地从原子和分子层面理解淀粉样蛋白生成过程和纤维结构。这篇综述旨在强调这些技术能够提供的信息,并突出它们在研究淀粉样蛋白片段时的优缺点。文中为每种技术提供了有意义的文献实例,并强调了它们在淀粉样纤维形成的动力学和结构表征方面的互补性。