Hess Christian
Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany.
Chem Soc Rev. 2021 Mar 15;50(5):3519-3564. doi: 10.1039/d0cs01059f.
Gaining insight into the mode of operation of heterogeneous catalysts is of great scientific and economic interest. Raman spectroscopy has proven its potential as a powerful vibrational spectroscopic technique for a fundamental and molecular-level characterization of catalysts and catalytic reactions. Raman spectra provide important insight into reaction mechanisms by revealing specific information on the catalysts' (defect) structure in the bulk and at the surface, as well as the presence of adsorbates and reaction intermediates. Modern Raman instrumentation based on single-stage spectrometers allows high throughput and versatility in design of in situ/operando cells to study working catalysts. This review highlights major advances in the use of Raman spectroscopy for the characterization of heterogeneous catalysts made during the past decade, including the development of new methods and potential directions of research for applying Raman spectroscopy to working catalysts. The main focus will be on gas-solid catalytic reactions, but (photo)catalytic reactions in the liquid phase will be touched on if it appears appropriate. The discussion begins with the main instrumentation now available for applying vibrational Raman spectroscopy to catalysis research, including in situ/operando cells for studying gas-solid catalytic processes. The focus then moves to the different types of information available from Raman spectra in the bulk and on the surface of solid catalysts, including adsorbates and surface depositions, as well as the use of theoretical calculations to facilitate band assignments and to describe (resonance) Raman effects. This is followed by a presentation of major developments in enhancing the Raman signal of heterogeneous catalysts by use of UV resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), and shell-isolated nanoparticle surface-enhanced Raman spectroscopy (SHINERS). The application of time-resolved Raman studies to structural and kinetic characterization is then discussed. Finally, recent developments in spatially resolved Raman analysis of catalysts and catalytic processes are presented, including the use of coherent anti-Stokes Raman spectroscopy (CARS) and tip-enhanced Raman spectroscopy (TERS). The review concludes with an outlook on potential future developments and applications of Raman spectroscopy in heterogeneous catalysis.
深入了解多相催化剂的作用模式具有重大的科学和经济意义。拉曼光谱已证明其作为一种强大的振动光谱技术的潜力,可用于对催化剂和催化反应进行基础和分子水平的表征。拉曼光谱通过揭示有关催化剂体相和表面的(缺陷)结构以及吸附质和反应中间体的存在的特定信息,为反应机理提供了重要的见解。基于单级光谱仪的现代拉曼仪器在原位/操作单元的设计中具有高通量和多功能性,可用于研究工作中的催化剂。本综述重点介绍了过去十年中拉曼光谱在多相催化剂表征方面的主要进展,包括新方法的开发以及将拉曼光谱应用于工作催化剂的潜在研究方向。主要重点将放在气-固催化反应上,但如果合适的话也会涉及液相中的(光)催化反应。讨论首先从目前可用于将振动拉曼光谱应用于催化研究的主要仪器开始,包括用于研究气-固催化过程的原位/操作单元。然后重点转向从固体催化剂体相和表面的拉曼光谱中可获得的不同类型信息,包括吸附质和表面沉积物,以及使用理论计算来辅助谱带归属并描述(共振)拉曼效应。接下来介绍通过使用紫外共振拉曼光谱、表面增强拉曼光谱(SERS)和壳层隔离纳米粒子表面增强拉曼光谱(SHINERS)增强多相催化剂拉曼信号的主要进展。然后讨论时间分辨拉曼研究在结构和动力学表征中的应用。最后,介绍了催化剂和催化过程的空间分辨拉曼分析的最新进展,包括相干反斯托克斯拉曼光谱(CARS)和针尖增强拉曼光谱(TERS)的使用。综述最后展望了拉曼光谱在多相催化中的潜在未来发展和应用。