a Institute of Computational Comparative Medicine (ICCM), Kansas State University , Manhattan , KS , USA.
b Department of Anatomy and Physiology , Kansas State University , Manhattan , KS , USA.
Nanotoxicology. 2018 Dec;12(10):1093-1112. doi: 10.1080/17435390.2018.1476986. Epub 2018 Jun 1.
A detailed understanding of the factors governing nanomaterial biodistribution is needed to rationally design safe nanomedicines. This research details the pharmacokinetics of gold nanoparticle (AuNP) biodistribution after arterial infusion of 40 or 80 nm AuNP (1 μg/ml) into the isolated perfused porcine skin flap (IPPSF). AuNP had surface coatings consisting of neutral polyethylene glycol (PEG), anionic lipoic acid (LA), or cationic branched polyethylenimine (BPEI). Effect of a porcine plasma corona (PPC) on 40 nm BPEI and PEG-AuNP were assessed in the IPPSF. Au concentrations were determined by ICP/MS and arterial to venous concentration-time profiles were analyzed over 8 hr (4 hr infusion, 4 hr washout) using a two-compartment pharmacokinetic model. IPPSF viability and vascular function were assessed by change in glucose utilization, vascular resistance, or weight gain after perfusion. All AuNP demonstrated some degree of AuNP arterial extraction and skin flap retention, as well as enhanced kinetic parameters of tissue uptake; with BPEI-AuNP consistently having the greatest biodistribution even with a PPC. Toxicological effects were not detected. Transmission electron microscopy confirmed intracellular uptake of AuNP. These studies paralleled previous in vitro cell culture studies using the same AuNP in human endothelial and renal proximal tubule cells, hepatocytes, keratinocytes, showing BPEI-AuNP having the greatest uptake, although the presence of a PPC did not reduce IPPSF biodistribution as in the cell culture studies. These findings clearly indicate arterial to the venous extraction of AuNP after infusion with the magnitude of extraction being greatest with the BPEI surface coating and provide data and model structure necessary to construct the whole body physiologically based pharmacokinetic models capable of utilizing available in vitro data.
详细了解纳米材料生物分布的影响因素对于合理设计安全的纳米药物至关重要。本研究详细介绍了经动脉输注 40 或 80nm 金纳米颗粒(AuNP)(1μg/ml)到离体猪皮瓣(IPPSF)后,AuNP 生物分布的药代动力学。AuNP 的表面涂层由中性聚乙二醇(PEG)、阴离子硫辛酸(LA)或阳离子支化聚乙烯亚胺(BPEI)组成。在 IPPSF 中评估了猪血浆冠(PPC)对 40nm BPEI 和 PEG-AuNP 的影响。通过电感耦合等离子体质谱法(ICP/MS)测定 Au 浓度,并采用双室药代动力学模型分析 8 小时(4 小时输注,4 小时冲洗)的动脉至静脉浓度-时间曲线。通过葡萄糖利用率、血管阻力或灌注后重量增加来评估 IPPSF 的存活能力和血管功能。所有 AuNP 均表现出一定程度的 AuNP 动脉提取和皮瓣保留,以及组织摄取的动力学参数增强;BPEI-AuNP 始终具有最大的生物分布,即使存在 PPC 也是如此。未检测到毒理学效应。透射电子显微镜证实了 AuNP 的细胞内摄取。这些研究与之前在人内皮细胞和肾近端小管细胞、肝细胞、角质形成细胞中使用相同 AuNP 的体外细胞培养研究相平行,表明 BPEI-AuNP 的摄取量最大,尽管存在 PPC 并没有像在细胞培养研究中那样减少 IPPSF 的生物分布。这些发现清楚地表明,输注后 AuNP 从动脉向静脉的提取,提取的幅度最大与 BPEI 表面涂层,提供了数据和模型结构,有必要构建全身生理基础药代动力学模型,能够利用现有的体外数据。