Suppr超能文献

人工智能、生理基因组学和精准医学。

Artificial intelligence, physiological genomics, and precision medicine.

机构信息

Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin.

Division of Nephrology, Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin.

出版信息

Physiol Genomics. 2018 Apr 1;50(4):237-243. doi: 10.1152/physiolgenomics.00119.2017. Epub 2018 Jan 26.

Abstract

Big data are a major driver in the development of precision medicine. Efficient analysis methods are needed to transform big data into clinically-actionable knowledge. To accomplish this, many researchers are turning toward machine learning (ML), an approach of artificial intelligence (AI) that utilizes modern algorithms to give computers the ability to learn. Much of the effort to advance ML for precision medicine has been focused on the development and implementation of algorithms and the generation of ever larger quantities of genomic sequence data and electronic health records. However, relevance and accuracy of the data are as important as quantity of data in the advancement of ML for precision medicine. For common diseases, physiological genomic readouts in disease-applicable tissues may be an effective surrogate to measure the effect of genetic and environmental factors and their interactions that underlie disease development and progression. Disease-applicable tissue may be difficult to obtain, but there are important exceptions such as kidney needle biopsy specimens. As AI continues to advance, new analytical approaches, including those that go beyond data correlation, need to be developed and ethical issues of AI need to be addressed. Physiological genomic readouts in disease-relevant tissues, combined with advanced AI, can be a powerful approach for precision medicine for common diseases.

摘要

大数据是精准医学发展的主要驱动力。需要有效的分析方法将大数据转化为临床可操作的知识。为此,许多研究人员转向机器学习(ML),这是一种人工智能(AI)方法,利用现代算法赋予计算机学习的能力。为了推进精准医学中的 ML,人们主要致力于开发和实施算法,以及生成越来越多的基因组序列数据和电子健康记录。然而,在推进精准医学中的 ML 方面,数据的相关性和准确性与数据的数量一样重要。对于常见疾病,在适用疾病的组织中进行生理基因组读出可能是一种有效的替代方法,可以衡量遗传和环境因素及其相互作用对疾病发展和进展的影响。适用疾病的组织可能难以获得,但也有一些重要的例外,如肾活检标本。随着人工智能的不断进步,需要开发新的分析方法,包括超越数据相关性的方法,并解决人工智能的伦理问题。与疾病相关的组织中的生理基因组读数,结合先进的人工智能,可以成为常见疾病精准医学的有力方法。

相似文献

1
Artificial intelligence, physiological genomics, and precision medicine.
Physiol Genomics. 2018 Apr 1;50(4):237-243. doi: 10.1152/physiolgenomics.00119.2017. Epub 2018 Jan 26.
2
Precision medicine and artificial intelligence: overview and relevance to reproductive medicine.
Fertil Steril. 2020 Nov;114(5):908-913. doi: 10.1016/j.fertnstert.2020.09.156.
3
Artificial Intelligence in Precision Cardiovascular Medicine.
J Am Coll Cardiol. 2017 May 30;69(21):2657-2664. doi: 10.1016/j.jacc.2017.03.571.
4
Machine learning for precision medicine.
Genome. 2021 Apr;64(4):416-425. doi: 10.1139/gen-2020-0131. Epub 2020 Oct 22.
5
Artificial intelligence and machine learning in precision and genomic medicine.
Med Oncol. 2022 Jun 15;39(8):120. doi: 10.1007/s12032-022-01711-1.
8
Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics.
OMICS. 2019 Nov;23(11):539-548. doi: 10.1089/omi.2019.0151. Epub 2019 Oct 25.
9
Artificial Intelligence as Accelerator for Genomic Medicine and Planetary Health.
OMICS. 2021 Dec;25(12):745-749. doi: 10.1089/omi.2021.0170. Epub 2021 Nov 15.
10
Artificial intelligence: A joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine.
Transfus Apher Sci. 2018 Jun;57(3):422-424. doi: 10.1016/j.transci.2018.05.004. Epub 2018 May 9.

引用本文的文献

1
Convergence of disciplines: a systematic review of multidisciplinary development approaches in artificial intelligence.
Front Digit Health. 2025 Aug 13;7:1400338. doi: 10.3389/fdgth.2025.1400338. eCollection 2025.
2
A Heart-to-Heart With ChatGPT: AI Applications in Hypertension.
Am J Hypertens. 2025 Aug 14;38(9):621-627. doi: 10.1093/ajh/hpaf045.
3
Precision diagnostics in children.
Camb Prism Precis Med. 2023 Feb 3;1:e17. doi: 10.1017/pcm.2023.4. eCollection 2023.
4
Ethics of artificial intelligence in prenatal and pediatric genomic medicine.
J Community Genet. 2024 Feb;15(1):13-24. doi: 10.1007/s12687-023-00678-4. Epub 2023 Oct 5.
5
Artificial Intelligence in Biological Sciences.
Life (Basel). 2022 Sep 14;12(9):1430. doi: 10.3390/life12091430.
6
Machine learning in postgenomic biology and personalized medicine.
Wiley Interdiscip Rev Data Min Knowl Discov. 2022 Mar-Apr;12(2). doi: 10.1002/widm.1451. Epub 2022 Jan 24.
8
Genome-Wide Association Study Statistical Models: A Review.
Methods Mol Biol. 2022;2481:43-62. doi: 10.1007/978-1-0716-2237-7_4.
9
Applications of Artificial Intelligence in Myopia: Current and Future Directions.
Front Med (Lausanne). 2022 Mar 11;9:840498. doi: 10.3389/fmed.2022.840498. eCollection 2022.
10
Artificial Intelligence in Cardiovascular Atherosclerosis Imaging.
J Pers Med. 2022 Mar 8;12(3):420. doi: 10.3390/jpm12030420.

本文引用的文献

1
Urinary Metabolites Associated with Blood Pressure on a Low- or High-Sodium Diet.
Theranostics. 2018 Feb 5;8(6):1468-1480. doi: 10.7150/thno.22018. eCollection 2018.
4
Applications of Support Vector Machine (SVM) Learning in Cancer Genomics.
Cancer Genomics Proteomics. 2018 Jan-Feb;15(1):41-51. doi: 10.21873/cgp.20063.
5
An introduction and overview of machine learning in neurosurgical care.
Acta Neurochir (Wien). 2018 Jan;160(1):29-38. doi: 10.1007/s00701-017-3385-8. Epub 2017 Nov 13.
6
Open source machine-learning algorithms for the prediction of optimal cancer drug therapies.
PLoS One. 2017 Oct 26;12(10):e0186906. doi: 10.1371/journal.pone.0186906. eCollection 2017.
7
Mastering the game of Go without human knowledge.
Nature. 2017 Oct 18;550(7676):354-359. doi: 10.1038/nature24270.
8
Neuroscience-Inspired Artificial Intelligence.
Neuron. 2017 Jul 19;95(2):245-258. doi: 10.1016/j.neuron.2017.06.011.
9
AI, people, and society.
Science. 2017 Jul 7;357(6346):7. doi: 10.1126/science.aao2466.
10
Personalized or Precision Medicine? The Example of Cystic Fibrosis.
Front Pharmacol. 2017 Jun 20;8:390. doi: 10.3389/fphar.2017.00390. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验