Suppr超能文献

评估脸书和推特监测以检测医疗产品安全信号:对美国食品药品监督管理局近期安全警报的分析

Evaluation of Facebook and Twitter Monitoring to Detect Safety Signals for Medical Products: An Analysis of Recent FDA Safety Alerts.

作者信息

Pierce Carrie E, Bouri Khaled, Pamer Carol, Proestel Scott, Rodriguez Harold W, Van Le Hoa, Freifeld Clark C, Brownstein John S, Walderhaug Mark, Edwards I Ralph, Dasgupta Nabarun

机构信息

Epidemico, Inc., Boston, MA, USA.

US Food and Drug Administration, Silver Spring, MD, USA.

出版信息

Drug Saf. 2017 Apr;40(4):317-331. doi: 10.1007/s40264-016-0491-0.

Abstract

INTRODUCTION

The rapid expansion of the Internet and computing power in recent years has opened up the possibility of using social media for pharmacovigilance. While this general concept has been proposed by many, central questions remain as to whether social media can provide earlier warnings for rare and serious events than traditional signal detection from spontaneous report data.

OBJECTIVE

Our objective was to examine whether specific product-adverse event pairs were reported via social media before being reported to the US FDA Adverse Event Reporting System (FAERS).

METHODS

A retrospective analysis of public Facebook and Twitter data was conducted for 10 recent FDA postmarketing safety signals at the drug-event pair level with six negative controls. Social media data corresponding to two years prior to signal detection of each product-event pair were compiled. Automated classifiers were used to identify each 'post with resemblance to an adverse event' (Proto-AE), among English language posts. A custom dictionary was used to translate Internet vernacular into Medical Dictionary for Regulatory Activities (MedDRA) Preferred Terms. Drug safety physicians conducted a manual review to determine causality using World Health Organization-Uppsala Monitoring Centre (WHO-UMC) assessment criteria. Cases were also compared with those reported in FAERS.

FINDINGS

A total of 935,246 posts were harvested from Facebook and Twitter, from March 2009 through October 2014. The automated classifier identified 98,252 Proto-AEs. Of these, 13 posts were selected for causality assessment of product-event pairs. Clinical assessment revealed that posts had sufficient information to warrant further investigation for two possible product-event associations: dronedarone-vasculitis and Banana Boat Sunscreen--skin burns. No product-event associations were found among the negative controls. In one of the positive cases, the first report occurred in social media prior to signal detection from FAERS, whereas the other case occurred first in FAERS.

CONCLUSIONS

An efficient semi-automated approach to social media monitoring may provide earlier insights into certain adverse events. More work is needed to elaborate additional uses for social media data in pharmacovigilance and to determine how they can be applied by regulatory agencies.

摘要

引言

近年来,互联网和计算能力的迅速发展使得利用社交媒体进行药物警戒成为可能。尽管许多人提出了这一总体概念,但关于社交媒体是否能比基于自发报告数据的传统信号检测更早地预警罕见和严重事件,核心问题依然存在。

目的

我们的目的是研究特定的产品-不良事件对在报告给美国食品药品监督管理局不良事件报告系统(FAERS)之前是否已通过社交媒体进行了报告。

方法

对10个近期美国食品药品监督管理局上市后安全信号在药物-事件对层面进行回顾性分析,并设置了6个阴性对照,分析公开的脸书和推特数据。收集每个产品-事件对信号检测前两年的社交媒体数据。使用自动分类器在英语帖子中识别每个“与不良事件相似的帖子”(Proto-AE)。使用自定义词典将网络俗语翻译成《监管活动医学词典》(MedDRA)首选术语。药物安全医师进行人工审核,以使用世界卫生组织-乌普萨拉监测中心(WHO-UMC)评估标准确定因果关系。还将这些病例与FAERS中报告的病例进行了比较。

结果

2009年3月至2014年10月期间,从脸书和推特共收集到935,246个帖子。自动分类器识别出98,252个Proto-AE。其中,选择了13个帖子进行产品-事件对的因果关系评估。临床评估显示,这些帖子有足够的信息值得对两种可能的产品-事件关联进行进一步调查:决奈达隆-血管炎和香蕉船防晒霜-皮肤烧伤。在阴性对照中未发现产品-事件关联。在一个阳性病例中,第一份报告出现在社交媒体上,早于FAERS的信号检测,而另一个病例则首先出现在FAERS中。

结论

一种高效的半自动社交媒体监测方法可能会为某些不良事件提供更早的见解。需要开展更多工作,以阐明社交媒体数据在药物警戒中的其他用途,并确定监管机构如何应用这些数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf96/5362648/863ac66c760b/40264_2016_491_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验