Suppr超能文献

验证英国多发性硬化症注册中心的门户人群。

Validating the portal population of the United Kingdom Multiple Sclerosis Register.

机构信息

Swansea University Medical School, Swansea, United Kingdom.

Swansea University Medical School, Swansea, United Kingdom.

出版信息

Mult Scler Relat Disord. 2018 Aug;24:3-10. doi: 10.1016/j.msard.2018.05.015. Epub 2018 May 25.

Abstract

The UK Multiple Sclerosis Register (UKMSR) is a large cohort study designed to capture 'real world' information about living with multiple sclerosis (MS) in the UK from diverse sources. The primary source of data is directly from people with Multiple Sclerosis (pwMS) captured by longitudinal questionnaires via an internet portal. This population's diagnosis of MS is self-reported and therefore unverified. The second data source is clinical data which is captured from MS Specialist Treatment centres across the UK. This includes a clinically confirmed diagnosis of MS (by Macdonald criteria) for consented patients. A proportion of the internet population have also been consented at their hospital making comparisons possible. This dataset is called the 'linked dataset'. The purpose of this paper is to examine the characteristics of the three datasets: the self-reported portal data, clinical data and linked data, in order to assess the validity of the self-reported portal data. The internet (n = 11,021) and clinical (n = 3,003) populations were studied for key shared characteristics. We found them to be closely matched for mean age at diagnosis (clinical = 37.39, portal = 39.28) and gender ratio (female %, portal = 73.1, clinical = 75.2). The Two Sample Kolmogorov-Smirnov test was for the continuous variables to examine is they were drawn from the same distribution. The null hypothesis was rejected only for age at diagnosis (D = 0.078, p < 0.01). The populations therefore, were drawn from different distributions, as there are more patients with relapsing disease in the clinical cohort. In all other analyses performed, the populations were shown to be drawn from the same distribution. Our analysis has shown that the UKMSR portal population is highly analogous to the entirely clinical (validated) population. This supports the validity of the self-reported diagnosis and therefore that the portal population can be utilised as a viable and valid cohort of people with Multiple Sclerosis for study.

摘要

英国多发性硬化症登记处(UKMSR)是一项大型队列研究,旨在从多个来源收集英国多发性硬化症患者的“真实世界”信息。主要数据来源是通过互联网门户直接从多发性硬化症患者(pwMS)那里获取的纵向问卷调查。该人群的多发性硬化症诊断是自我报告的,因此未经证实。第二个数据源是来自英国各地多发性硬化症专科治疗中心的临床数据。这包括经麦克唐纳标准确认的多发性硬化症临床诊断(在获得同意的患者中)。一部分互联网人群也在其医院获得了同意,这使得比较成为可能。该数据集称为“链接数据集”。本文的目的是检查三个数据集(自我报告的门户数据、临床数据和链接数据)的特征,以评估自我报告的门户数据的有效性。研究了互联网(n=11021)和临床(n=3003)人群的关键共享特征。我们发现,它们在诊断时的平均年龄(临床=37.39,门户=39.28)和性别比例(女性%,门户=73.1,临床=75.2)方面非常匹配。双样本 Kolmogorov-Smirnov 检验用于检验连续变量是否来自同一分布。只有在诊断时的年龄这一变量上,零假设被拒绝(D=0.078,p<0.01)。这表明这两个群体来自不同的分布,因为临床队列中存在更多的复发型疾病患者。在进行的所有其他分析中,都表明这两个群体来自同一分布。我们的分析表明,UKMSR 门户人群与完全临床(验证)人群高度相似。这支持自我报告诊断的有效性,因此门户人群可以作为多发性硬化症患者的可行和有效队列进行研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验