Suppr超能文献

随机播种与 mRNA 自我招募生成异质果蝇生殖质。

Stochastic Seeding Coupled with mRNA Self-Recruitment Generates Heterogeneous Drosophila Germ Granules.

机构信息

Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.

Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.

出版信息

Curr Biol. 2018 Jun 18;28(12):1872-1881.e3. doi: 10.1016/j.cub.2018.04.037. Epub 2018 May 31.

Abstract

The formation of ribonucleoprotein assemblies called germ granules is a conserved feature of germline development. In Drosophila, germ granules form at the posterior of the oocyte in a specialized cytoplasm called the germ plasm, which specifies germline fate during embryogenesis. mRNAs, including nanos (nos) and polar granule component (pgc), that function in germline development are localized to the germ plasm through their incorporation into germ granules, which deliver them to the primordial germ cells. Germ granules are nucleated by Oskar (Osk) protein and contain varying combinations and quantities of their constituent mRNAs, which are organized as spatially distinct, multi-copy homotypic clusters. The process that gives rise to such heterogeneous yet organized granules remains unknown. Here, we show that individual nos and pgc transcripts can populate the same nascent granule, and these first transcripts then act as seeds, recruiting additional like transcripts to form homotypic clusters. Within a granule, homotypic clusters grow independently of each other but depend on the simultaneous acquisition of additional Osk. Although granules can contain multiple clusters of a particular mRNA, granule mRNA content is dominated by cluster size. These results suggest that the accumulation of mRNAs in the germ plasm is controlled by the mRNAs themselves through their ability to form homotypic clusters; thus, RNA self-association drives germ granule mRNA localization. We propose that a stochastic seeding and self-recruitment mechanism enables granules to simultaneously incorporate many different mRNAs while ensuring that each becomes enriched to a functional threshold.

摘要

被称为生殖质的核糖核蛋白组装体的形成是生殖细胞系发育的一个保守特征。在果蝇中,生殖质在卵母细胞的后部形成,这是一种称为生殖质的特殊细胞质,它在胚胎发生过程中指定生殖细胞系的命运。在生殖细胞系发育中起作用的 mRNAs,包括 nanos(nos)和极粒体成分(pgc),通过将其掺入生殖质中来定位于生殖质,从而将其递送到原始生殖细胞。生殖质由 Oskar(Osk)蛋白引发,并包含其组成 mRNAs 的不同组合和数量,这些 mRNAs 作为空间不同的、多拷贝的同型簇组织。导致这种异质但有组织的颗粒形成的过程仍然未知。在这里,我们表明,单个 nos 和 pgc 转录本可以在同一个新生颗粒中存在,并且这些最初的转录本充当种子,招募额外的相似转录本形成同型簇。在一个颗粒内,同型簇独立生长,但依赖于同时获得额外的 Osk。尽管颗粒可以包含特定 mRNA 的多个簇,但颗粒 mRNA 含量主要由簇大小决定。这些结果表明,mRNA 在生殖质中的积累受 mRNA 自身通过形成同型簇的能力控制;因此,RNA 自组装驱动生殖质颗粒的 mRNA 定位。我们提出,一种随机的种子和自我招募机制使颗粒能够同时包含许多不同的 mRNAs,同时确保每个 mRNAs 富集到功能阈值。

相似文献

引用本文的文献

8
How germ granules promote germ cell fate.生殖质如何促进生殖细胞命运。
Nat Rev Genet. 2024 Nov;25(11):803-821. doi: 10.1038/s41576-024-00744-8. Epub 2024 Jun 18.

本文引用的文献

3
Biomolecular condensates: organizers of cellular biochemistry.生物分子凝聚物:细胞生物化学的组织者
Nat Rev Mol Cell Biol. 2017 May;18(5):285-298. doi: 10.1038/nrm.2017.7. Epub 2017 Feb 22.
10
Structure of Drosophila Oskar reveals a novel RNA binding protein.果蝇Oskar蛋白的结构揭示了一种新型RNA结合蛋白。
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11541-6. doi: 10.1073/pnas.1515568112. Epub 2015 Aug 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验