Suppr超能文献

计算成本高昂的后验密度的局部无导数近似

Local Derivative-Free Approximation of Computationally Expensive Posterior Densities.

作者信息

Bliznyuk Nikolay, Ruppert David, Shoemaker Christine A

机构信息

Assistant Professor, Department of Statistics, University of Florida, Gainesville, FL 32611.

Andrew Schultz Jr. Professor of Engineering and Professor of Statistical Science, School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853.

出版信息

J Comput Graph Stat. 2012;21(2):676-695. doi: 10.1080/10618600.2012.681255. Epub 2012 Jun 14.

Abstract

Bayesian inference using Markov chain Monte Carlo (MCMC) is computationally prohibitive when the posterior density of interest, , is computationally expensive to evaluate. We develop a derivative-free algorithm GRIMA to accurately approximate by interpolation over its high-probability density (HPD) region, which is initially unknown. Our local approach reduces the waste of computational budget on approximation of in the low-probability region, which is inherent in global experimental designs. However, estimation of the HPD region is nontrivial when derivatives of are not available or are not informative about the shape of the HPD region. Without relying on derivatives, GRIMA iterates (a) sequential knot selection over the estimated HPD region of to refine the surrogate posterior and (b) re-estimation of the HPD region using an MCMC sample from the updated surrogate density, which is inexpensive to obtain. GRIMA is applicable to approximation of general unnormalized posterior densities. To determine the range of tractable problem dimensions, we conduct simulation experiments on test densities with linear and nonlinear component-wise dependence, skewness, kurtosis and multimodality. Subsequently, we use GRIMA in a case study to calibrate a computationally intensive nonlinear regression model to real data from the Town Brook watershed. Supplemental materials for this article are available online.

摘要

当感兴趣的后验密度(\pi(\theta|y))评估起来计算成本很高时,使用马尔可夫链蒙特卡罗(MCMC)的贝叶斯推断在计算上是难以实现的。我们开发了一种无导数算法GRIMA,通过在其高概率密度(HPD)区域进行插值来准确近似(\pi(\theta|y)),而该区域最初是未知的。我们的局部方法减少了在低概率区域近似(\pi(\theta|y))时计算预算的浪费,这在全局实验设计中是固有的。然而,当(\pi(\theta|y))的导数不可用或对HPD区域的形状没有信息量时,HPD区域的估计并非易事。不依赖导数,GRIMA迭代(a)在估计的(\pi(\theta|y))的HPD区域上进行顺序节点选择,以细化替代后验,以及(b)使用从更新后的替代密度中获得的MCMC样本重新估计HPD区域,这很容易获得。GRIMA适用于一般未归一化后验密度的近似。为了确定可处理问题维度的范围,我们对具有线性和非线性分量依赖、偏度、峰度和多峰性的测试密度进行了模拟实验。随后,我们在一个案例研究中使用GRIMA将一个计算密集型非线性回归模型校准到来自城镇布鲁克流域的实际数据。本文的补充材料可在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e7/5978778/d40a6b9c1da8/nihms875565f1.jpg

相似文献

2
Uncertainty Analysis for Computationally Expensive Models with Multiple Outputs.具有多个输出的计算成本高昂模型的不确定性分析
J Agric Biol Environ Stat. 2012 Dec;17(4):623-640. doi: 10.1007/s13253-012-0091-0. Epub 2012 May 12.
10
Variational Hamiltonian Monte Carlo via Score Matching.通过得分匹配的变分哈密顿蒙特卡罗方法
Bayesian Anal. 2018 Jun;13(2):485-506. doi: 10.1214/17-ba1060. Epub 2017 Jul 25.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验