Pieschner Susanne, Fuchs Christiane
Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
Department of Mathematics, Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany.
R Soc Open Sci. 2020 Oct 7;7(10):200270. doi: 10.1098/rsos.200270. eCollection 2020 Oct.
Modelling random dynamical systems in continuous time, diffusion processes are a powerful tool in many areas of science. Model parameters can be estimated from time-discretely observed processes using Markov chain Monte Carlo (MCMC) methods that introduce auxiliary data. These methods typically approximate the transition densities of the process numerically, both for calculating the posterior densities and proposing auxiliary data. Here, the Euler-Maruyama scheme is the standard approximation technique. However, the MCMC method is computationally expensive. Using higher-order approximations may accelerate it, but the specific implementation and benefit remain unclear. Hence, we investigate the utilization and usefulness of higher-order approximations in the example of the Milstein scheme. Our study demonstrates that the MCMC methods based on the Milstein approximation yield good estimation results. However, they are computationally more expensive and can be applied to multidimensional processes only with impractical restrictions. Moreover, the combination of the Milstein approximation and the well-known modified bridge proposal introduces additional numerical challenges.
在连续时间中对随机动力系统进行建模时,扩散过程是许多科学领域中的强大工具。模型参数可通过使用引入辅助数据的马尔可夫链蒙特卡罗(MCMC)方法,从时间离散观测的过程中进行估计。这些方法通常在数值上近似过程的转移密度,用于计算后验密度和提出辅助数据。在此,欧拉-丸山格式是标准的近似技术。然而,MCMC方法计算成本高昂。使用高阶近似可能会加速它,但具体实现和益处仍不明确。因此,我们以米尔斯坦格式为例研究高阶近似的利用和实用性。我们的研究表明,基于米尔斯坦近似的MCMC方法能产生良好的估计结果。然而,它们计算成本更高,并且只能在不切实际的限制下应用于多维过程。此外,米尔斯坦近似与著名的修正桥提议的结合带来了额外的数值挑战。