Suppr超能文献

用于设计实验的逐组方差分析同步成分分析

Group-wise ANOVA simultaneous component analysis for designed experiments.

作者信息

Saccenti Edoardo, Smilde Age K, Camacho José

机构信息

Wageningen University & Research, Wageningen, the Netherlands.

University of Amsterdam, Amsterdam, the Netherlands.

出版信息

Metabolomics. 2018;14(6):73. doi: 10.1007/s11306-018-1369-1. Epub 2018 May 21.

Abstract

INTRODUCTION

Modern experiments pertain not only to the measurement of many variables but also follow complex experimental designs where many factors are manipulated at the same time. This data can be conveniently analyzed using multivariate tools like ANOVA-simultaneous component analysis (ASCA) which allows interpretation of the variation induced by the different factors in a principal component analysis fashion. However, while in general only a subset of the measured variables may be related to the problem studied, all variables contribute to the final model and this may hamper interpretation.

OBJECTIVES

We introduce here a sparse implementation of ASCA termed group-wise ANOVA-simultaneous component analysis (GASCA) with the aim of obtaining models that are easier to interpret.

METHODS

GASCA is based on the concept of group-wise sparsity introduced in group-wise principal components analysis where structure to impose sparsity is defined in terms of groups of correlated variables found in the correlation matrices calculated from the effect matrices.

RESULTS

The GASCA model, containing only selected subsets of the original variables, is easier to interpret and describes relevant biological processes.

CONCLUSIONS

GASCA is applicable to any kind of data obtained through designed experiments such as, but not limited to, metabolomic, proteomic and gene expression data.

摘要

引言

现代实验不仅涉及许多变量的测量,还遵循复杂的实验设计,其中许多因素会同时受到操控。使用诸如方差分析 - 同步成分分析(ASCA)等多元工具可以方便地分析这些数据,该工具允许以主成分分析的方式解释不同因素引起的变异。然而,虽然一般来说只有一部分测量变量可能与所研究的问题相关,但所有变量都会对最终模型产生影响,这可能会妨碍解释。

目的

我们在此引入一种ASCA的稀疏实现方法,称为分组方差分析 - 同步成分分析(GASCA),旨在获得更易于解释的模型。

方法

GASCA基于分组主成分分析中引入的分组稀疏性概念,其中在根据效应矩阵计算的相关矩阵中,根据相关变量组来定义施加稀疏性的结构。

结果

GASCA模型仅包含原始变量的选定子集,更易于解释,并描述了相关的生物学过程。

结论

GASCA适用于通过设计实验获得的任何类型的数据,例如但不限于代谢组学、蛋白质组学和基因表达数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验