Herbig Bradley A, Yu Xinren, Diamond Scott L
Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, 1024 Vagelos Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Biomicrofluidics. 2018 May 15;12(4):042201. doi: 10.1063/1.5021769. eCollection 2018 Jul.
Extreme flows can exist within pathological vessel geometries or mechanical assist devices which create complex forces and lead to thrombogenic problems associated with disease. Turbulence and boundary layer separation are difficult to obtain in microfluidics due to the low Reynolds number flow in small channels. However, elongational flows, extreme shear rates and stresses, and stagnation point flows are possible using microfluidics and small perfusion volumes. In this review, a series of microfluidic devices used to study pathological blood flows are described. In an extreme stenosis channel pre-coated with fibrillar collagen that rapidly narrows from 500 m to 15 m, the plasma von Willebrand Factor (VWF) will elongate and assemble into thick fiber bundles on the collagen. Using a micropost-impingement device, plasma flow impinging on the micropost generates strong elongational and wall shear stresses that trigger the growth of a VWF bundle around the post (no collagen required). Using a stagnation-point device to mimic the zone near flow reattachment, blood can be directly impinged upon a procoagulant surface of collagen and the tissue factor. Clots formed at the stagnation point of flow impingement have a classic core-shell architecture where the core is highly activated (P-selectin positive platelets and fibrin rich). Finally, within occlusive clots that fill a microchannel, the Darcy flow driven by ΔP/L > 70 mm-Hg/mm-clot is sufficient to drive NETosis of entrapped neutrophils, an event not requiring either thrombin or fibrin. Novel microfluidic devices are powerful tools to access physical environments that exist in human disease.
极端血流可存在于病理血管几何结构或机械辅助装置中,这些装置会产生复杂的力,并导致与疾病相关的血栓形成问题。由于小通道内的雷诺数较低,微流控中难以获得湍流和边界层分离。然而,利用微流控和小灌注体积,可以实现伸长流动、极端剪切速率和应力以及驻点流动。在本综述中,描述了一系列用于研究病理性血流的微流控装置。在预先涂有纤维状胶原蛋白的极端狭窄通道中,通道从500μm迅速变窄至15μm,血浆血管性血友病因子(VWF)会伸长并在胶原蛋白上组装成粗纤维束。使用微柱撞击装置,撞击微柱的血浆流会产生强烈的伸长应力和壁面剪应力,从而触发微柱周围VWF束的生长(无需胶原蛋白)。使用驻点装置模拟流动重新附着附近的区域,血液可直接撞击胶原蛋白和组织因子的促凝表面。在流动撞击的驻点处形成的凝块具有经典的核壳结构,其中核心高度活化(P-选择素阳性血小板和富含纤维蛋白)。最后,在填充微通道的闭塞性凝块内,由ΔP/L > 70 mmHg/mm-凝块驱动的达西流足以驱动被困中性粒细胞的中性粒细胞胞外陷阱形成,这一过程既不需要凝血酶也不需要纤维蛋白。新型微流控装置是进入人类疾病中存在的物理环境的有力工具。