Department of Biomaterials, Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam, Germany.
Langmuir. 2014 Mar 4;30(8):2129-36. doi: 10.1021/la404290c. Epub 2014 Feb 14.
Biological materials typically display complex morphologies and hierarchical architectures, properties that are hardly matched by synthetic materials. Understanding the biological control of mineral properties will enable the development of new synthetic approaches toward biomimetic functional materials. Here, we combine biocombinatorial approaches with a proteome homology search and in vitro mineralization assays to assess the role of biological determinants in biomimetic magnetite mineralization. Our results suggest that the identified proteins and biomimetic polypeptides influence nucleation in vitro. Even though the in vivo role cannot be directly determined from our experiments, we can rationalize the following design principles: proteins, larger complexes, or membrane components that promote nucleation in vivo are likely to expose positively charged residues to a negatively charged crystal surface. In turn, components with acidic (negatively charged) functionality are nucleation inhibitors, which stabilize an amorphous structure through the coordination of iron.
生物材料通常具有复杂的形态和层次结构,这些特性是很难在合成材料中实现的。了解生物对矿物性质的控制将使我们能够开发出针对仿生功能材料的新的合成方法。在这里,我们将组合生物组合方法与蛋白质组同源搜索和体外矿化测定相结合,以评估生物决定因素在仿生磁铁矿矿化中的作用。我们的结果表明,所鉴定的蛋白质和仿生多肽会影响体外成核。尽管我们的实验不能直接确定体内的作用,但我们可以从以下设计原则中进行推断:在体内促进成核的蛋白质、较大的复合物或膜成分可能会将带正电荷的残基暴露在带负电荷的晶体表面上。反过来,具有酸性(带负电荷)功能的成分是成核抑制剂,通过铁的配位稳定非晶态结构。