Suppr超能文献

用于检测单导联心电图信号异常的跨设备联邦无监督学习

Cross-device federated unsupervised learning for the detection of anomalies in single-lead electrocardiogram signals.

作者信息

Kapsecker Maximilian, Jonas Stephan M

机构信息

TUM School of Computation, Information and Technology, Technical University of Munich, Garching bei München, Bavaria, Germany.

Institute for Digital Medicine, University Hospital Bonn, Bonn, North Rhine-Westphalia, Germany.

出版信息

PLOS Digit Health. 2025 Apr 7;4(4):e0000793. doi: 10.1371/journal.pdig.0000793. eCollection 2025 Apr.

Abstract

BACKGROUND

Federated unsupervised learning offers a promising approach to leveraging decentralized data stored on consumer devices, addressing concerns about privacy and lack of annotation. Single-lead electrocardiograms (ECGs) captured on consumer devices are of particular interest due to the global prevalence of cardiovascular disease. The combination of federated and unsupervised learning on biomedical data in a cross-device environment raises questions regarding feasibility and accuracy, especially when considering heterogeneous data.

METHODS

A randomly selected subset of the Icentia11k open-source dataset containing mobile ECG recordings was used for this study. Heartbeats are labeled as normal, unknown or the pathological classes: premature atrial contraction and premature ventricular contraction. A linear autoencoder model was used as a method to predict the pathological cases using the embedding space and reconstruction error. The model was integrated into a mobile application that supports ECG data recording, preprocessing into heartbeat segments, and participation in a federated learning pipeline as a client node. The autoencoder was trained collaboratively using federated learning with twenty mobile devices, followed by an additional ten epochs of on-device fine-tuning to account for personalization.

RESULTS

The approach yielded a sensitivity of 0.87 and a specificity of 0.8 when the predicted anomalies were compared with the ground truth in a binary fashion. Specifically, the detection rate for premature ventricular contraction was excellent with a sensitivity of 0.97.

CONCLUSION

Overall, the approach proved to be feasible in implementation and competitive in accuracy, specifically when the model was fine-tuned to the subject's data.

摘要

背景

联邦无监督学习提供了一种很有前景的方法,可用于利用存储在消费设备上的分散数据,解决对隐私和缺乏标注的担忧。由于心血管疾病在全球的普遍存在,消费设备上捕获的单导联心电图(ECG)尤其令人关注。在跨设备环境中对生物医学数据进行联邦学习和无监督学习的结合,引发了关于可行性和准确性的问题,特别是在考虑异构数据时。

方法

本研究使用了Icentia11k开源数据集中随机选择的一个子集,该子集包含移动ECG记录。心跳被标记为正常、未知或病理类别:房性早搏和室性早搏。线性自动编码器模型被用作一种方法,利用嵌入空间和重建误差来预测病理情况。该模型被集成到一个移动应用程序中,该应用程序支持ECG数据记录、预处理为心跳段,并作为客户端节点参与联邦学习管道。自动编码器使用联邦学习在20台移动设备上进行协同训练,随后进行另外10个轮次的设备上微调以实现个性化。

结果

当以二元方式将预测的异常与真实情况进行比较时,该方法的灵敏度为0.87,特异性为0.8。具体而言,室性早搏的检测率极佳,灵敏度为0.97。

结论

总体而言,该方法在实施中被证明是可行的,在准确性方面具有竞争力,特别是当模型针对受试者的数据进行微调时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff8/11975069/e044b58c1aa4/pdig.0000793.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验