Suppr超能文献

原子力显微镜和模拟分析顺铂诱导的单链 DNA 弯曲。

Analysis of single, cisplatin-induced DNA bends by atomic force microscopy and simulations.

机构信息

Department of Physics, Wake Forest University, Winston-Salem, NC, USA.

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.

出版信息

J Mol Recognit. 2018 Oct;31(10):e2731. doi: 10.1002/jmr.2731. Epub 2018 Jun 3.

Abstract

Bent DNA, or DNA that is locally more flexible, is a recognition motif for many DNA binding proteins. These DNA conformational properties can thus influence many cellular processes, such as replication, transcription, and DNA repair. The importance of these DNA conformational properties is juxtaposed to the experimental difficulty to accurately determine small bends, locally more flexible DNA, or a combination of both (bends with increased flexibility). In essence, many current bulk methods use average quantities, such as the average end-to-end distance, to extract DNA conformational properties; they cannot access the additional information that is contained in the end-to-end distance distributions. We developed a method that exploits this additional information to determine DNA conformational parameters. The method is based on matching end-to-end distance distributions obtained experimentally by atomic force microscopy imaging to distributions obtained from simulations. We applied this method to investigate cisplatin GG biadducts. We found that cisplatin induces a bend angle of 36° and softens the DNA locally around the bend.

摘要

弯曲 DNA,或局部更灵活的 DNA,是许多 DNA 结合蛋白的识别基序。因此,这些 DNA 构象特性可以影响许多细胞过程,如复制、转录和 DNA 修复。这些 DNA 构象特性的重要性与准确确定小弯曲、局部更灵活的 DNA 或两者(具有增加灵活性的弯曲)的实验难度形成鲜明对比。本质上,许多当前的批量方法使用平均量,如平均末端到末端距离,来提取 DNA 构象特性;它们无法获取端到端距离分布中包含的附加信息。我们开发了一种利用这种附加信息来确定 DNA 构象参数的方法。该方法基于将原子力显微镜成像实验获得的末端到末端距离分布与模拟获得的分布进行匹配。我们将该方法应用于顺铂 GG 双加合物的研究。我们发现,顺铂诱导 36°的弯曲角度,并使弯曲周围的 DNA 局部变软。

相似文献

1
Analysis of single, cisplatin-induced DNA bends by atomic force microscopy and simulations.
J Mol Recognit. 2018 Oct;31(10):e2731. doi: 10.1002/jmr.2731. Epub 2018 Jun 3.
3
Analysis of the intrinsic bend in the M13 origin of replication by atomic force microscopy.
Biophys J. 2003 Jul;85(1):409-15. doi: 10.1016/S0006-3495(03)74485-3.
4
Structural changes of linear DNA molecules induced by cisplatin.
Biochem Biophys Res Commun. 2015 Feb 20;457(4):688-92. doi: 10.1016/j.bbrc.2015.01.050. Epub 2015 Jan 22.
5
Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy.
Methods Mol Biol. 2018;1672:557-573. doi: 10.1007/978-1-4939-7306-4_37.
6
HMG domain proteins induce sharp bends in cisplatin-modified DNA.
Biochemistry. 1994 Dec 20;33(50):15124-30. doi: 10.1021/bi00254a023.
7
Imaging DNA Structure by Atomic Force Microscopy.
Methods Mol Biol. 2016;1431:47-60. doi: 10.1007/978-1-4939-3631-1_5.
8
Quantitative analysis of the flexibility effect of cisplatin on circular DNA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):042703. doi: 10.1103/PhysRevE.88.042703. Epub 2013 Oct 10.
9
Scaling exponents and probability distributions of DNA end-to-end distance.
Phys Rev Lett. 2005 Oct 7;95(15):158105. doi: 10.1103/PhysRevLett.95.158105. Epub 2005 Oct 6.
10
High flexibility of DNA on short length scales probed by atomic force microscopy.
Nat Nanotechnol. 2006 Nov;1(2):137-41. doi: 10.1038/nnano.2006.63. Epub 2006 Nov 3.

引用本文的文献

1
A trackable trinuclear platinum complex for breast cancer treatment.
Nucleic Acids Res. 2025 Jul 8;53(13). doi: 10.1093/nar/gkaf628.
2
Impacts of amino acid-linked platinum(II) complexes on DNA structure.
J Biol Inorg Chem. 2025 Feb;30(1):87-101. doi: 10.1007/s00775-025-02097-x. Epub 2025 Jan 24.
3
Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions.
Int J Mol Sci. 2023 Nov 20;24(22):16545. doi: 10.3390/ijms242216545.
4
Atomic Force Microscopy of DNA and DNA-Protein Interactions.
Methods Mol Biol. 2022;2476:43-62. doi: 10.1007/978-1-0716-2221-6_5.
5
Atomic force microscopy-A tool for structural and translational DNA research.
APL Bioeng. 2021 Jul 9;5(3):031504. doi: 10.1063/5.0054294. eCollection 2021 Sep.
8
Multiscale modeling of double-helical DNA and RNA: a unification through Lie groups.
J Phys Chem B. 2012 Jul 26;116(29):8556-72. doi: 10.1021/jp2126015. Epub 2012 Jun 7.

本文引用的文献

1
HMGB1 bound to cisplatin-DNA adducts undergoes extensive acetylation and phosphorylation .
Chem Sci. 2015 Mar 1;6(3):2074-2078. doi: 10.1039/c4sc03650f. Epub 2014 Dec 15.
2
DNA-protein interactions explored by atomic force microscopy.
Semin Cell Dev Biol. 2018 Jan;73:231-239. doi: 10.1016/j.semcdb.2017.07.015. Epub 2017 Jul 14.
3
Visualizing the Path of DNA through Proteins Using DREEM Imaging.
Mol Cell. 2016 Jan 21;61(2):315-23. doi: 10.1016/j.molcel.2015.12.012. Epub 2016 Jan 7.
4
The role of DNA repair pathways in cisplatin resistant lung cancer.
Cancer Treat Rev. 2014 Dec;40(10):1161-70. doi: 10.1016/j.ctrv.2014.10.003. Epub 2014 Oct 18.
5
Cisplatin in cancer therapy: molecular mechanisms of action.
Eur J Pharmacol. 2014 Oct 5;740:364-78. doi: 10.1016/j.ejphar.2014.07.025. Epub 2014 Jul 21.
6
Time-lapse AFM imaging of DNA conformational changes induced by daunorubicin.
Nano Lett. 2013;13(11):5679-84. doi: 10.1021/nl403361f. Epub 2013 Oct 16.
7
8
Structural basis of human DNA polymerase η-mediated chemoresistance to cisplatin.
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7269-74. doi: 10.1073/pnas.1202681109. Epub 2012 Apr 23.
9
DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis.
Cancer Lett. 2013 May 28;332(2):237-48. doi: 10.1016/j.canlet.2012.01.007. Epub 2012 Jan 17.
10
Human topoisomerase II-DNA interaction study by using atomic force microscopy.
FEBS Lett. 2011 Oct 3;585(19):3139-45. doi: 10.1016/j.febslet.2011.08.051. Epub 2011 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验