a Department of Biological Sciences , Simon Fraser University , Burnaby , Canada.
Crit Rev Biochem Mol Biol. 2018 Aug;53(4):356-381. doi: 10.1080/10409238.2018.1476449. Epub 2018 Jun 4.
Iron is required for microbial growth and proliferation. To survive in low-iron environments, some microorganisms secrete ferric iron chelators called siderophores. Siderophore biosynthesis occurs via two pathways: the non-ribosomal peptide synthetase (NRPS) pathway and the NRPS-independent siderophore (NIS) synthetase pathway. NIS enzymes function by adenylating a carboxylic acid substrate, typically citrate, or a derivative, followed by nucleophilic capture of an amine or alcohol and displacement of a citryl intermediate. In this review, we summarize recent advances in NIS biochemistry with a particular focus on structural biology and confirm the classification of NIS enzymes into Types A, A', B, and C based on substrate specificity. Based on a phylogenetic analysis, we also propose a new subclass of NIS enzymes, Type C', responsible for dimerization and macrocyclization of complex and substituted amine or amide intermediates. Finally, we describe the role of NIS enzymes in virulence of pathogenic microbes and discuss NIS inhibitors as potential anti-microbial agents.
铁是微生物生长和增殖所必需的。为了在低铁环境中生存,一些微生物会分泌称为铁载体的三价铁螯合剂。铁载体生物合成有两种途径:非核糖体肽合成酶 (NRPS) 途径和非 NRPS 独立铁载体 (NIS) 合成酶途径。NIS 酶通过腺苷酸化羧酸底物(通常为柠檬酸或其衍生物)来发挥作用,然后亲核捕获胺或醇,并取代柠檬酸中间产物。在这篇综述中,我们总结了 NIS 生物化学的最新进展,特别关注结构生物学,并根据底物特异性将 NIS 酶分类为 A、A'、B 和 C 型。基于系统发育分析,我们还提出了一种新的 NIS 酶亚类,即负责复杂取代胺或酰胺中间产物二聚化和大环化的 C'型。最后,我们描述了 NIS 酶在致病微生物毒力中的作用,并讨论了 NIS 抑制剂作为潜在的抗菌剂。