Department of Chemistry, University of Florida, Gainesville, United States.
Elife. 2018 Jun 4;7:e33286. doi: 10.7554/eLife.33286.
produces ascaroside pheromones to control its development and behavior. Even minor structural differences in the ascarosides have dramatic consequences for their biological activities. Here, we identify a mechanism that enables to dynamically tailor the fatty-acid side chains of the indole-3-carbonyl (IC)-modified ascarosides it has produced. In response to starvation, uses the peroxisomal acyl-CoA synthetase ACS-7 to activate the side chains of medium-chain IC-ascarosides for β-oxidation involving the acyl-CoA oxidases ACOX-1.1 and ACOX-3. This pathway rapidly converts a favorable ascaroside pheromone that induces aggregation to an unfavorable one that induces the stress-resistant dauer larval stage. Thus, the pathway allows the worm to respond to changing environmental conditions and alter its chemical message without having to synthesize new ascarosides de novo. We establish a new model for biosynthesis of the IC-ascarosides in which side-chain β-oxidation is critical for controlling the type of IC-ascarosides produced.
产生阿索罗肽信息素来控制其发育和行为。即使阿索罗肽的微小结构差异也会对其生物活性产生巨大影响。在这里,我们确定了一种机制,使能够动态调整其产生的吲哚-3-羰基(IC)修饰阿索罗肽的脂肪酸侧链。在饥饿的情况下,利用过氧化物酶体酰基辅酶 A 合成酶 ACS-7 激活中链 IC-阿索罗肽的侧链,进行涉及酰基辅酶 A 氧化酶 ACOX-1.1 和 ACOX-3 的β-氧化。这条途径可以快速将有利于聚集的阿索罗肽信息素转化为不利于诱导应激耐受 dauer 幼虫阶段的信息素。因此,该途径允许蠕虫根据环境条件的变化来改变其化学信息,而无需从头合成新的阿索罗肽。我们建立了一个新的 IC-阿索罗肽生物合成模型,其中侧链β-氧化对于控制所产生的 IC-阿索罗肽的类型至关重要。