Suppr超能文献

原子级薄膜中埃尺度孔隙中水和蒸汽传输的差异。

Differences in water and vapor transport through angstrom-scale pores in atomically thin membranes.

机构信息

Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37212, USA.

Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.

出版信息

Nat Commun. 2022 Nov 7;13(1):6709. doi: 10.1038/s41467-022-34172-1.

Abstract

The transport of water through nanoscale capillaries/pores plays a prominent role in biology, ionic/molecular separations, water treatment and protective applications. However, the mechanisms of water and vapor transport through nanoscale confinements remain to be fully understood. Angstrom-scale pores (2.8-6.6 Å) introduced into the atomically thin graphene lattice represent ideal model systems to probe water transport at the molecular-length scale with short pores (aspect ratio ~1-1.9) i.e., pore diameters approach the pore length (3.4 Å) at the theoretical limit of material thickness. Here, we report on orders of magnitude differences (80×) between transport of water vapor (44.2-52.4 g m day Pa) and liquid water (0.6-2 g m day Pa) through nanopores (2.8-6.6 Å in diameter) in monolayer graphene and rationalize this difference via a flow resistance model in which liquid water permeation occurs near the continuum regime whereas water vapor transport occurs in the free molecular flow regime. We demonstrate centimeter-scale atomically thin graphene membranes with up to an order of magnitude higher water vapor transport rate (5.4-6.1 × 10g m day) than most commercially available ultra-breathable protective materials while effectively blocking even sub-nanometer (>0.66 nm) model ions/molecules.

摘要

水在纳米级毛细管/孔隙中的传输在生物学、离子/分子分离、水处理和防护应用中起着重要作用。然而,水和蒸汽通过纳米级封闭空间的传输机制仍有待充分理解。在原子级薄的石墨烯晶格中引入的埃级孔隙(2.8-6.6 Å)代表了理想的模型系统,可以在分子长度尺度上探测水的传输,短孔隙(纵横比1-1.9),即孔径接近理论上材料厚度的极限(3.4 Å)。在这里,我们报告了水蒸气(44.2-52.4 g m day Pa)和液态水(0.6-2 g m day Pa)通过单层石墨烯中的纳米孔(直径2.8-6.6 Å)的传输存在数量级差异(80×),并通过流阻模型对此差异进行了合理化解释,该模型认为液态水的渗透发生在连续区附近,而水蒸气的传输发生在自由分子流区。我们展示了厘米级原子薄的石墨烯膜,其水蒸气传输速率比大多数市售的超透气防护材料高一个数量级(~5.4-6.1×10g m day),同时有效阻止了甚至亚纳米级(>0.66 nm)的模型离子/分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bce/9640652/59f68d140462/41467_2022_34172_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验