Muñiz Kilian
Institute for Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science & Technology , Av. Països Catalans 16 , 43007 Tarragona , Spain.
ICREA , Passeig Lluís Companys 23 , 08010 Barcelona , Spain.
Acc Chem Res. 2018 Jun 19;51(6):1507-1519. doi: 10.1021/acs.accounts.8b00137. Epub 2018 Jun 4.
The quest for the development of new protocols that provide general conditions for oxidative carbon-nitrogen bond formation has grown over recent years. Within this context, due to feasibility and benignity considerations in biochemical sciences, reactions that rely on main group oxidants as the only promoters have received particular interest. We have recently found that simple protonolysis events enable the incorporation of nitrogenated groups of the bissulfonimide family into the coordination sphere of common iodine(III) complexes such as diacetoxy iodobenzene. The products of the type ArI(OAc)(NTs) represent rare examples of iodine(III) compounds displaying reactive iodine-nitrogen single bonds. Further protonolysis furnishes the corresponding iodine(III) compounds ArI(NTs) containing two defined iodine-nitrogen single bonds for unprecedented dual transfer of both nitrogenated groups. It is of great synthetic importance that these new compounds contain iodine-nitrogen entities, which upon dissociation in solution lead to electrophilic iodine centers and nucleophilic nitrogen groups. This has enabled the development of a body of conceptually new amination reactions, which do not rely on conventional electrophilic nitrogen reagents but rather employ iodine(III) as an electrophilic activator and bissulfonimides as the source of subsequent nucleophilic amination. Additional diversification arises from the ambident nature of bissulfonimines enabling oxygenation pathways. The exciting chemistry covered in this Account comprises structural features of the reagents (including X-ray analysis), scope and limitation in synthetic amination of different hydrocarbons (including sp-, sp-, and sp-hybridized centers as in acetylenes, alkenes, enols, butadienes, allenes, arenes, and alkylketones), and physical-organic and theoretical analysis of the underlying reaction mechanisms. The oxidative transformations with all their rich diversifications originate from the versatile redox chemistry of the iodine(III) and iodine(I) pair, which shares several aspects of transition metal high oxidation state chemistry. For the present aryliodine(III) reagents, steric and electronic fine-tuning is possible through accurate engineering of the arene substituent. In addition to the general reactivity of the I-N bond, chiral aryliodine(III) reagents with defined stereochemical information in the aryl backbone are conceptually compatible with this approach. Thus, the development of enantioselective amination reactions with up to 99% ee was also successful. Several of the active enantioselective reagents have been isolated and structurally characterized. Following this approach for the important class of chiral vicinal diamines, an unprecedented direct diamination of alkenes could be conducted in an enantioselective catalytic manner under full intermolecular reaction control. This latter reaction is based on the precise engineering of a chiral aryliodine(III) catalyst in combination with bismesylimide as nitrogen source. It is the consequence of the precise understanding of the reaction behavior of structurally defined bisimidoiodine(III) reagents.
近年来,开发能为氧化碳 - 氮键形成提供通用条件的新方案的探索不断增加。在此背景下,出于生物化学领域可行性和温和性的考虑,仅依赖主族氧化剂作为唯一促进剂的反应受到了特别关注。我们最近发现,简单的质子解事件能够将双磺酰亚胺家族的含氮基团引入常见碘(III)配合物(如二乙酰氧基碘苯)的配位球中。ArI(OAc)(NTs) 类型的产物是显示出活性碘 - 氮单键的碘(III)化合物中罕见的例子。进一步的质子解提供了相应的含有两个确定的碘 - 氮单键的碘(III)化合物 ArI(NTs),用于两种含氮基团前所未有的双重转移。这些新化合物含有碘 - 氮实体具有重要的合成意义,这些实体在溶液中解离会产生亲电碘中心和亲核氮基团。这使得一系列概念上新的胺化反应得以发展,这些反应不依赖于传统的亲电氮试剂而是使用碘(III)作为亲电活化剂以及双磺酰亚胺作为后续亲核胺化的来源。由于双磺酰亚胺的两可性质能够实现氧化途径,从而带来了额外的多样性。本综述中涵盖的令人兴奋的化学内容包括试剂的结构特征(包括X射线分析)、不同烃类(包括乙炔、烯烃、烯醇、丁二烯、丙二烯、芳烃和烷基酮中的sp -、sp² - 和sp³ - 杂化中心)合成胺化的范围和局限性,以及对潜在反应机理的物理有机和理论分析。所有丰富多样的氧化转化都源于碘(III)和碘(I)对多功能的氧化还原化学,这与过渡金属高氧化态化学有几个方面的相似之处。对于目前的芳基碘(III)试剂,可以通过对芳烃取代基进行精确设计来实现空间和电子的微调。除了I - N键的一般反应性外,在芳基主链中具有确定立体化学信息的手性芳基碘(III)试剂在概念上与这种方法兼容。因此,表示对映选择性胺化反应高达99% ee的开发也取得了成功。已经分离并对几种活性对映选择性试剂进行了结构表征采用这种方法用于重要的手性邻二胺类别,可以在完全分子间反应控制下以对映选择性催化方式进行烯烃前所未有的直接二胺化。后一个反应是基于手性芳基碘(III)催化剂与双甲磺酰亚胺作为氮源相结合的精确设计。这是对结构明确的双亚氨基碘(III)试剂反应行为精确理解的结果。