State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
J Mol Biol. 2017 Aug 18;429(17):2710-2725. doi: 10.1016/j.jmb.2017.07.009. Epub 2017 Jul 26.
The cellular uptake of glucose is an essential physiological process, and movement of glucose across biological membranes requires specialized transporters. The major facilitator superfamily glucose transporters GLUTs, encoded by the SLC2A genes, have been a paradigm for functional, mechanistic, and structural understanding of solute transport in the past century. This review starts with a glimpse into the structural biology of membrane proteins and particularly membrane transport proteins, enumerating the landmark structures in the past 25years. The recent breakthrough in the structural elucidation of GLUTs is then elaborated following a brief overview of the research history of these archetypal transporters, their functional specificity, and physiological and pathophysiological significances. Structures of GLUT1, GLUT3, and GLUT5 in distinct transport and/or ligand-binding states reveal detailed mechanisms of the alternating access transport cycle and substrate recognition, and thus illuminate a path by which structure-based drug design may be applied to help discover novel therapeutics against several debilitating human diseases associated with GLUT malfunction and/or misregulation.
葡萄糖的细胞摄取是一种基本的生理过程,而葡萄糖穿过生物膜的运动需要专门的转运蛋白。过去一个世纪以来,SLC2A 基因编码的主要易化剂超家族葡萄糖转运蛋白(GLUTs)一直是人们理解溶质运输的功能、机制和结构的典范。这篇综述首先简要介绍了膜蛋白,特别是膜转运蛋白的结构生物学,列举了过去 25 年中的标志性结构。然后,在简要概述这些典型转运蛋白的研究历史、它们的功能特异性以及生理和病理生理意义之后,详细阐述了 GLUTs 结构的最新突破。不同转运和/或配体结合状态下的 GLUT1、GLUT3 和 GLUT5 的结构揭示了交替访问转运循环和底物识别的详细机制,从而为基于结构的药物设计提供了一条途径,有助于发现针对几种与 GLUT 功能障碍和/或失调相关的使人衰弱的人类疾病的新型治疗方法。