Suppr超能文献

白色念珠菌无法从宿主中获取足够的乙醇胺来支持在缺乏磷脂酰乙醇胺合成的情况下的毒力。

Candida albicans Cannot Acquire Sufficient Ethanolamine from the Host To Support Virulence in the Absence of Phosphatidylethanolamine Synthesis.

机构信息

Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.

Department of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.

出版信息

Infect Immun. 2018 Jul 23;86(8). doi: 10.1128/IAI.00815-17. Print 2018 Aug.

Abstract

mutants for phosphatidylserine (PS) synthase (ΔΔ) and PS decarboxylase (ΔΔ ΔΔ) are compromised for virulence in mouse models of systemic infection and oropharyngeal candidiasis (OPC). Both of these enzymes are necessary to synthesize phosphatidylethanolamine (PE) by the pathway, but these mutants are still capable of growth in culture media, as they can import ethanolamine from media to synthesize PE through the Kennedy pathway. Given that the host has ethanolamine in its serum, the exact mechanism by which virulence is lost in these mutants is not clear. There are two competing hypotheses to explain their loss of virulence. (i) PE from the Kennedy pathway cannot substitute for -synthesized PE. (ii) The mutants cannot acquire sufficient ethanolamine from the host to support adequate PE synthesis. These hypotheses can be simultaneously tested if ethanolamine availability is increased for while it is inside the host. We accomplish this by transcomplementation of with the serine decarboxylase gene (), which converts cytoplasmic serine to ethanolamine. Expression of in either mutant restores PE synthesis, even in the absence of exogenous ethanolamine. also restores virulence to ΔΔ and ΔΔ ΔΔ strains in systemic and OPC infections. Thus, in the absence of PE synthesis, cannot acquire sufficient ethanolamine from the host to support virulence. In addition, expression of restores PS synthesis in the ΔΔ mutant, which may be due to causing PS decarboxylase to run backwards and convert PE to PS.

摘要

磷脂酰丝氨酸(PS)合酶(ΔΔ)和 PS 脱羧酶(ΔΔ ΔΔ)的突变体在系统性感染和口咽念珠菌病(OPC)的小鼠模型中,其毒力受到影响。这两种酶都是通过途径合成磷脂酰乙醇胺(PE)所必需的,但这些突变体仍然能够在培养基中生长,因为它们可以从培养基中导入乙醇胺,通过肯尼迪途径合成 PE。由于宿主血清中含有乙醇胺,这些突变体毒力丧失的确切机制尚不清楚。有两种相互竞争的假说可以解释它们毒力的丧失。(i) 肯尼迪途径中的 PE 不能替代 -合成的 PE。(ii) 突变体不能从宿主中获得足够的乙醇胺来支持足够的 PE 合成。如果在宿主内部增加对 乙醇胺的可用性,可以同时测试这两个假说。我们通过用丝氨酸脱羧酶基因()转互补来实现这一点,该基因将细胞质丝氨酸转化为乙醇胺。在任一突变体中表达 ,即使没有外源性乙醇胺,也能恢复 PE 合成。在系统性感染和 OPC 感染中, 也能恢复 ΔΔ 和 ΔΔ ΔΔ 菌株的毒力。因此,在缺乏 PE 合成的情况下, 不能从宿主中获得足够的乙醇胺来支持毒力。此外,在 ΔΔ 突变体中表达 恢复了 PS 合成,这可能是由于导致 PS 脱羧酶反向运行并将 PE 转化为 PS。

相似文献

2
Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans.
Mol Microbiol. 2010 Mar;75(5):1112-32. doi: 10.1111/j.1365-2958.2009.07018.x. Epub 2010 Feb 4.
3
Arabidopsis serine decarboxylase mutants implicate the roles of ethanolamine in plant growth and development.
Int J Mol Sci. 2012;13(3):3176-3188. doi: 10.3390/ijms13033176. Epub 2012 Mar 7.
5
Role of phosphatidylserine synthase in shaping the phospholipidome of Candida albicans.
FEMS Yeast Res. 2017 Mar 1;17(2). doi: 10.1093/femsyr/fox007.
6
Overproduction of Phospholipids by the Kennedy Pathway Leads to Hypervirulence in .
Front Microbiol. 2019 Feb 7;10:86. doi: 10.3389/fmicb.2019.00086. eCollection 2019.
7
The role of phosphatidylserine decarboxylase in brain phospholipid metabolism.
J Neurochem. 1983 Nov;41(5):1445-54. doi: 10.1111/j.1471-4159.1983.tb00844.x.
8
An improved and highly selective fluorescence assay for measuring phosphatidylserine decarboxylase activity.
J Biol Chem. 2020 Jul 3;295(27):9211-9222. doi: 10.1074/jbc.RA120.013421. Epub 2020 May 19.
10
Lipids of Candida albicans: subcellular distribution and biosynthesis.
J Gen Microbiol. 1990 Jun;136(6):993-6. doi: 10.1099/00221287-136-6-993.

引用本文的文献

1
The small molecule CBR-5884 inhibits the phosphatidylserine synthase.
mBio. 2024 May 8;15(5):e0063324. doi: 10.1128/mbio.00633-24. Epub 2024 Apr 9.
3
When Is It Appropriate to Take Off the Mask? Signaling Pathways That Regulate ß(1,3)-Glucan Exposure in .
Front Fungal Biol. 2022 Mar;3. doi: 10.3389/ffunb.2022.842501. Epub 2022 Mar 9.
4
Mucosal Infection with Unmasked Candida albicans Cells Impacts Disease Progression in a Host Niche-Specific Manner.
Infect Immun. 2022 Dec 15;90(12):e0034222. doi: 10.1128/iai.00342-22. Epub 2022 Nov 14.
6
Mapping the Substrate-Binding Sites in the Phosphatidylserine Synthase in .
Front Cell Infect Microbiol. 2021 Dec 22;11:765266. doi: 10.3389/fcimb.2021.765266. eCollection 2021.
7
Structural insights into phosphatidylethanolamine formation in bacterial membrane biogenesis.
Sci Rep. 2021 Mar 11;11(1):5785. doi: 10.1038/s41598-021-85195-5.
9

本文引用的文献

1
Role of phosphatidylserine synthase in shaping the phospholipidome of Candida albicans.
FEMS Yeast Res. 2017 Mar 1;17(2). doi: 10.1093/femsyr/fox007.
2
Biotin Auxotrophy and Biotin Enhanced Germ Tube Formation in Candida albicans.
Microorganisms. 2016 Sep 21;4(3):37. doi: 10.3390/microorganisms4030037.
3
SB-224289 Antagonizes the Antifungal Mechanism of the Marine Depsipeptide Papuamide A.
PLoS One. 2016 May 16;11(5):e0154932. doi: 10.1371/journal.pone.0154932. eCollection 2016.
5
Phenotypic consequences of LYS4 gene disruption in Candida albicans.
Yeast. 2014 Aug;31(8):299-308. doi: 10.1002/yea.3021. Epub 2014 Jul 11.
6
NADPH oxidase-driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality.
PLoS Pathog. 2013;9(10):e1003634. doi: 10.1371/journal.ppat.1003634. Epub 2013 Oct 3.
7
Mouse model of oropharyngeal candidiasis.
Nat Protoc. 2012 Mar 8;7(4):637-42. doi: 10.1038/nprot.2012.011.
8
Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae.
Genetics. 2012 Feb;190(2):317-49. doi: 10.1534/genetics.111.130286.
9
Host cell invasion and virulence mediated by Candida albicans Ssa1.
PLoS Pathog. 2010 Nov 11;6(11):e1001181. doi: 10.1371/journal.ppat.1001181.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验