Brawley Zachary T, Bauman Stephen J, Darweesh Ahmad A, Debu Desalegn T, Tork Ladani Faezeh, Herzog Joseph B
Microelectronics-Photonics Graduate Program, University of Arkansas, 731 W. Dickson St., Fayetteville, Arkansas, AR 72701, USA.
Department of Physics, University of Arkansas, 825 W. Dickson St., Fayetteville, Arkansas, AR 72701, USA.
Materials (Basel). 2018 Jun 4;11(6):942. doi: 10.3390/ma11060942.
This work studies the effect of a plasmonic array structure coupled with thin film oxide substrate layers on optical surface enhancement using a finite element method. Previous results have shown that as the nanowire spacing increases in the sub-100 nm range, enhancement decreases; however, this work improves upon previous results by extending the range above 100 nm. It also averages optical enhancement across the entire device surface rather than localized regions, which gives a more practical estimate of the sensor response. A significant finding is that in higher ranges, optical enhancement does not always decrease but instead has additional plasmonic modes at greater nanowire and spacing dimensions resonant with the period of the structure and the incident light wavelength, making it possible to optimize enhancement in more accessibly fabricated nanowire array structures. This work also studies surface enhancement to optimize the geometries of plasmonic wires and oxide substrate thickness. Periodic oscillations of surface enhancement are observed at specific oxide thicknesses. These results will help improve future research by providing optimized geometries for SERS molecular sensors.
本研究采用有限元方法,研究了等离子体阵列结构与薄膜氧化物衬底层耦合对光学表面增强的影响。先前的研究结果表明,当纳米线间距在100纳米以下范围内增加时,增强效果会降低;然而,本研究通过将范围扩展到100纳米以上,对先前的结果进行了改进。它还对整个器件表面的光学增强进行了平均,而不是局限于局部区域,这给出了更实际的传感器响应估计。一个重要的发现是,在更高的范围内,光学增强并不总是降低,而是在更大的纳米线和间距尺寸下具有额外的等离子体模式,与结构周期和入射光波长共振,这使得在更容易制造的纳米线阵列结构中优化增强成为可能。本研究还研究了表面增强,以优化等离子体线的几何形状和氧化物衬底厚度。在特定的氧化物厚度下观察到表面增强的周期性振荡。这些结果将通过为表面增强拉曼散射(SERS)分子传感器提供优化的几何形状,有助于改进未来的研究。