Suppr超能文献

用于理解液体电解质中电催化反应的电气化模型催化剂。

Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes.

作者信息

Faisal Firas, Stumm Corinna, Bertram Manon, Waidhas Fabian, Lykhach Yaroslava, Cherevko Serhiy, Xiang Feifei, Ammon Maximilian, Vorokhta Mykhailo, Šmíd Břetislav, Skála Tomáš, Tsud Nataliya, Neitzel Armin, Beranová Klára, Prince Kevin C, Geiger Simon, Kasian Olga, Wähler Tobias, Schuster Ralf, Schneider M Alexander, Matolín Vladimír, Mayrhofer Karl J J, Brummel Olaf, Libuda Jörg

机构信息

Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.

出版信息

Nat Mater. 2018 Jul;17(7):592-598. doi: 10.1038/s41563-018-0088-3. Epub 2018 Jun 4.

Abstract

Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future. However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to 'electrify' complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal-support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal-support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.

摘要

电催化是我们未来向可再生能源系统转型的核心。大多数可再生能源的储能和转换技术都依赖于电催化过程,并且随着可再生能源提供的廉价电能越来越多,化学工业在不久的将来将实现电气化。然而,我们对电催化的基本理解落后于长期以来一直占据主导地位的经典多相催化领域。在此,我们描述了一种推进电催化材料基础研究的新策略。我们提议将通过表面科学方法制备的基于复合氧化物的模型催化剂“电气化”,以探索液体电解质中的电催化反应。我们通过将原子级定义的铂/氧化钴模型催化剂转移到电化学环境中,同时保留其原子表面结构,证明了这一概念的可行性。使用这种方法,我们探索了粒径效应,并确定了迄今为止未知的金属-载体相互作用,这种相互作用在纳米颗粒界面处稳定了氧化铂。金属-载体相互作用开辟了一条新的协同反应途径,该途径涉及金属铂和氧化铂。我们的结果说明了这一概念的潜力,它为构建用于基础电催化研究的原子级定义的模型电极提供了一种系统方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验