Simon Clémence, Morel Oriane, Neutelings Godfrey, Baldacci-Cresp Fabien, Baucher Marie, Spriet Corentin, Biot Christophe, Hawkins Simon, Lion Cédric
Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille 59655, France.
Laboratoire de Biotechnologie Végétale (LBV), Univ. Bruxelles, B-6041 Gosselies, Belgium.
Chem Biomed Imaging. 2023 Jul 6;1(5):479-487. doi: 10.1021/cbmi.3c00052. eCollection 2023 Aug 28.
In this paper, we present the use of multiplex click/bioorthogonal chemistry combined with super-resolution Airyscan microscopy to track biomolecules in living systems with a focus on studying lignin formation in plant cell walls. While laser scanning confocal microscopy (LSCM) provided insights into the tissue-scale dynamics of lignin formation and distribution in our previous reports, its limited resolution precluded an in-depth analysis of lignin composition at the unique cell wall or substructure level. To overcome this limitation, we explored the use of Airyscan microscopy, which, among the super-resolution techniques available, offers an optimal balance between performance, cost, accessibility, and ease of implementation. Our study demonstrates that a triple labeling strategy using copper-catalyzed azide-alkyne cycloaddition (CuAAC), strain-promoted azide-alkyne cycloaddition (SPAAC), and inverse electronic-demand Diels-Alder cycloaddition (IEDDA) to label modified lignin metabolic precursors can be combined with Airyscan microscopy to reveal the zones of active lignification at the single cell level with improved sensitivity and resolution. This approach enables insights into the lignin composition in wall substructures, such as pits or in wall layers that are otherwise not distinguishable by classical LSCM. Our work emphasizes the importance of studying lignin formation in plant cell walls and demonstrates the potential of combining bioorthogonal chemistry and super-resolution microscopy techniques for studying biomolecules in living systems.
在本文中,我们展示了多重点击/生物正交化学与超分辨率艾里斑扫描显微镜相结合的应用,以追踪活细胞系统中的生物分子,重点是研究植物细胞壁中木质素的形成。虽然激光扫描共聚焦显微镜(LSCM)在我们之前的报告中提供了关于木质素形成和分布的组织尺度动态的见解,但其有限的分辨率排除了在独特的细胞壁或亚结构水平上对木质素组成进行深入分析的可能性。为了克服这一限制,我们探索了艾里斑扫描显微镜的应用,在现有的超分辨率技术中,它在性能、成本、可及性和易于实施之间提供了最佳平衡。我们的研究表明,使用铜催化的叠氮化物 - 炔烃环加成反应(CuAAC)、应变促进的叠氮化物 - 炔烃环加成反应(SPAAC)和反向电子需求狄尔斯 - 阿尔德环加成反应(IEDDA)对修饰的木质素代谢前体进行标记的三重标记策略,可以与艾里斑扫描显微镜相结合,以更高的灵敏度和分辨率揭示单细胞水平上的活跃木质化区域。这种方法能够深入了解细胞壁亚结构(如纹孔或传统LSCM无法区分的细胞壁层)中的木质素组成。我们的工作强调了研究植物细胞壁中木质素形成的重要性,并展示了将生物正交化学和超分辨率显微镜技术相结合用于研究活细胞系统中生物分子的潜力。
Cell Chem Biol. 2017-3-16
Angew Chem Int Ed Engl. 2018-11-21
Acc Chem Res. 2011-8-15
Molecules. 2021-7-30
Pharmaceuticals (Basel). 2024-9-26
Cell Chem Biol. 2017-3-16
Top Curr Chem (Cham). 2024-2-24
Chem Soc Rev. 2023-1-25
Acc Chem Res. 2022-11-1
Plant Methods. 2022-3-5
Plant Physiol. 2022-2-4
Chem Rev. 2022-2-9
Nat Rev Methods Primers. 2021