文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用Airyscan超分辨率显微镜和生物正交化学探索植物细胞壁中的木质化复杂性。

Exploring Lignification Complexity in Plant Cell Walls with Airyscan Super-resolution Microscopy and Bioorthogonal Chemistry.

作者信息

Simon Clémence, Morel Oriane, Neutelings Godfrey, Baldacci-Cresp Fabien, Baucher Marie, Spriet Corentin, Biot Christophe, Hawkins Simon, Lion Cédric

机构信息

Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille 59655, France.

Laboratoire de Biotechnologie Végétale (LBV), Univ. Bruxelles, B-6041 Gosselies, Belgium.

出版信息

Chem Biomed Imaging. 2023 Jul 6;1(5):479-487. doi: 10.1021/cbmi.3c00052. eCollection 2023 Aug 28.


DOI:10.1021/cbmi.3c00052
PMID:39473934
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11503671/
Abstract

In this paper, we present the use of multiplex click/bioorthogonal chemistry combined with super-resolution Airyscan microscopy to track biomolecules in living systems with a focus on studying lignin formation in plant cell walls. While laser scanning confocal microscopy (LSCM) provided insights into the tissue-scale dynamics of lignin formation and distribution in our previous reports, its limited resolution precluded an in-depth analysis of lignin composition at the unique cell wall or substructure level. To overcome this limitation, we explored the use of Airyscan microscopy, which, among the super-resolution techniques available, offers an optimal balance between performance, cost, accessibility, and ease of implementation. Our study demonstrates that a triple labeling strategy using copper-catalyzed azide-alkyne cycloaddition (CuAAC), strain-promoted azide-alkyne cycloaddition (SPAAC), and inverse electronic-demand Diels-Alder cycloaddition (IEDDA) to label modified lignin metabolic precursors can be combined with Airyscan microscopy to reveal the zones of active lignification at the single cell level with improved sensitivity and resolution. This approach enables insights into the lignin composition in wall substructures, such as pits or in wall layers that are otherwise not distinguishable by classical LSCM. Our work emphasizes the importance of studying lignin formation in plant cell walls and demonstrates the potential of combining bioorthogonal chemistry and super-resolution microscopy techniques for studying biomolecules in living systems.

摘要

在本文中,我们展示了多重点击/生物正交化学与超分辨率艾里斑扫描显微镜相结合的应用,以追踪活细胞系统中的生物分子,重点是研究植物细胞壁中木质素的形成。虽然激光扫描共聚焦显微镜(LSCM)在我们之前的报告中提供了关于木质素形成和分布的组织尺度动态的见解,但其有限的分辨率排除了在独特的细胞壁或亚结构水平上对木质素组成进行深入分析的可能性。为了克服这一限制,我们探索了艾里斑扫描显微镜的应用,在现有的超分辨率技术中,它在性能、成本、可及性和易于实施之间提供了最佳平衡。我们的研究表明,使用铜催化的叠氮化物 - 炔烃环加成反应(CuAAC)、应变促进的叠氮化物 - 炔烃环加成反应(SPAAC)和反向电子需求狄尔斯 - 阿尔德环加成反应(IEDDA)对修饰的木质素代谢前体进行标记的三重标记策略,可以与艾里斑扫描显微镜相结合,以更高的灵敏度和分辨率揭示单细胞水平上的活跃木质化区域。这种方法能够深入了解细胞壁亚结构(如纹孔或传统LSCM无法区分的细胞壁层)中的木质素组成。我们的工作强调了研究植物细胞壁中木质素形成的重要性,并展示了将生物正交化学和超分辨率显微镜技术相结合用于研究活细胞系统中生物分子的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b863/11503671/d25bc6244761/im3c00052_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b863/11503671/be8910175b9a/im3c00052_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b863/11503671/a4b4d7fbb919/im3c00052_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b863/11503671/59be95eca798/im3c00052_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b863/11503671/ab09366822de/im3c00052_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b863/11503671/d25bc6244761/im3c00052_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b863/11503671/be8910175b9a/im3c00052_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b863/11503671/a4b4d7fbb919/im3c00052_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b863/11503671/59be95eca798/im3c00052_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b863/11503671/ab09366822de/im3c00052_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b863/11503671/d25bc6244761/im3c00052_0005.jpg

相似文献

[1]
Exploring Lignification Complexity in Plant Cell Walls with Airyscan Super-resolution Microscopy and Bioorthogonal Chemistry.

Chem Biomed Imaging. 2023-7-6

[2]
BLISS: A Bioorthogonal Dual-Labeling Strategy to Unravel Lignification Dynamics in Plants.

Cell Chem Biol. 2017-3-16

[3]
One, Two, Three: A Bioorthogonal Triple Labelling Strategy for Studying the Dynamics of Plant Cell Wall Formation In Vivo.

Angew Chem Int Ed Engl. 2018-11-21

[4]
Visualizing Lignification Dynamics in Plants with Click Chemistry: Dual Labeling is BLISS!

J Vis Exp. 2018-1-26

[5]
Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics.

Electrophoresis. 2016-6

[6]
From mechanism to mouse: a tale of two bioorthogonal reactions.

Acc Chem Res. 2011-8-15

[7]
IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications.

Molecules. 2021-7-30

[8]
Innovative Peptide Bioconjugation Chemistry with Radionuclides: Beyond Classical Click Chemistry.

Pharmaceuticals (Basel). 2024-9-26

[9]
Labelling of DNA and RNA in the cellular environment by means of bioorthogonal cycloaddition chemistry.

RSC Chem Biol. 2020-6-2

[10]
A "Double Click" for Illuminating Plant Cell Walls.

Cell Chem Biol. 2017-3-16

引用本文的文献

[1]
Bioorthogonal Reactions in Bioimaging.

Top Curr Chem (Cham). 2024-2-24

本文引用的文献

[1]
Metabolic glycoengineering - exploring glycosylation with bioorthogonal chemistry.

Chem Soc Rev. 2023-1-25

[2]
Imaging and Editing the Phospholipidome.

Acc Chem Res. 2022-11-1

[3]
Super-resolution imaging of Douglas fir xylem cell wall nanostructure using SRRF microscopy.

Plant Methods. 2022-3-5

[4]
Imaging plant cells and organs with light-sheet and super-resolution microscopy.

Plant Physiol. 2022-2-4

[5]
Azide-Modified Nucleosides as Versatile Tools for Bioorthogonal Labeling and Functionalization.

Chem Rec. 2022-5

[6]
Dynamic imaging of cell wall polysaccharides by metabolic click-mediated labeling of pectins in living elongating cells.

Plant J. 2022-5

[7]
Chemical Reporters for Bacterial Glycans: Development and Applications.

Chem Rev. 2022-2-9

[8]
REPRISAL: mapping lignification dynamics using chemistry, data segmentation, and ratiometric analysis.

Plant Physiol. 2022-2-4

[9]
Bioorthogonal chemistry.

Nat Rev Methods Primers. 2021

[10]
Recent Advances in Fluorescence Imaging by Genetically Encoded Non-canonical Amino Acids.

J Mol Biol. 2022-4-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索