Suppr超能文献

两阶段方案中利用快速轮回基因组选择进行长期遗传增益的最优杂交选择。

Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection.

机构信息

The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush Research Centre, University of Edinburgh, Midlothian, EH25 9RG, UK.

出版信息

Theor Appl Genet. 2018 Sep;131(9):1953-1966. doi: 10.1007/s00122-018-3125-3. Epub 2018 Jun 6.

Abstract

Key message Optimal cross selection increases long-term genetic gain of two-part programs with rapid recurrent genomic selection. It achieves this by optimising efficiency of converting genetic diversity into genetic gain through reducing the loss of genetic diversity and reducing the drop of genomic prediction accuracy with rapid cycling. This study evaluates optimal cross selection to balance selection and maintenance of genetic diversity in two-part plant breeding programs with rapid recurrent genomic selection. The two-part program reorganises a conventional breeding program into a population improvement component with recurrent genomic selection to increase the mean value of germplasm and a product development component with standard methods to develop new lines. Rapid recurrent genomic selection has a large potential, but is challenging due to genotyping costs or genetic drift. Here we simulate a wheat breeding program for 20 years and compare optimal cross selection against truncation selection in the population improvement component with one to six cycles per year. With truncation selection we crossed a small or a large number of parents. With optimal cross selection we jointly optimised selection, maintenance of genetic diversity, and cross allocation with AlphaMate program. The results show that the two-part program with optimal cross selection delivered the largest genetic gain that increased with the increasing number of cycles. With four cycles per year optimal cross selection had 78% (15%) higher long-term genetic gain than truncation selection with a small (large) number of parents. Higher genetic gain was achieved through higher efficiency of converting genetic diversity into genetic gain; optimal cross selection quadrupled (doubled) efficiency of truncation selection with a small (large) number of parents. Optimal cross selection also reduced the drop of genomic selection accuracy due to the drift between training and prediction populations. In conclusion optimal cross selection enables optimal management and exploitation of population improvement germplasm in two-part programs.

摘要

关键信息

最优杂交选择通过减少遗传多样性的损失和降低快速循环导致的基因组预测准确性下降,优化了将遗传多样性转化为遗传增益的效率,从而增加了两阶段计划中快速反复基因组选择的长期遗传增益。本研究评估了最优杂交选择,以平衡具有快速反复基因组选择的两阶段植物育种计划中的选择和遗传多样性的维持。两阶段计划将常规育种计划重新组织为具有反复基因组选择的群体改良组件,以提高种质的平均值,以及具有标准方法的产品开发组件,以开发新系。快速反复的基因组选择具有很大的潜力,但由于基因分型成本或遗传漂变而具有挑战性。在这里,我们模拟了一个 20 年的小麦育种计划,并比较了每年进行一次到六次循环的群体改良组件中的最优杂交选择和截断选择。使用截断选择,我们杂交了少量或大量的亲本。使用最优杂交选择,我们通过 AlphaMate 程序联合优化了选择、遗传多样性的维持和杂交分配。结果表明,具有最优杂交选择的两阶段计划提供了最大的遗传增益,随着循环次数的增加而增加。每年进行四次循环时,最优杂交选择的长期遗传增益比具有少量(大量)亲本的截断选择高 78%(15%)。通过更高的遗传多样性转化为遗传增益的效率实现了更高的遗传增益;最优杂交选择使具有少量(大量)亲本的截断选择的效率提高了四倍(两倍)。最优杂交选择还降低了由于训练和预测群体之间的漂变导致的基因组选择准确性下降。总之,最优杂交选择使两阶段计划中的群体改良种质得到最佳的管理和利用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd9/6096640/9e62ce98f50d/122_2018_3125_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验