Suppr超能文献

探索性因子分析的近似惩罚最大似然法:正交情形

Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case.

作者信息

Jin Shaobo, Moustaki Irini, Yang-Wallentin Fan

机构信息

Department of Statistics, Uppsala University, Uppsala, Sweden.

Department of Statistics, London School of Economics and Political Science, London, UK.

出版信息

Psychometrika. 2018 Jun 6. doi: 10.1007/s11336-018-9623-z.

Abstract

The problem of penalized maximum likelihood (PML) for an exploratory factor analysis (EFA) model is studied in this paper. An EFA model is typically estimated using maximum likelihood and then the estimated loading matrix is rotated to obtain a sparse representation. Penalized maximum likelihood simultaneously fits the EFA model and produces a sparse loading matrix. To overcome some of the computational drawbacks of PML, an approximation to PML is proposed in this paper. It is further applied to an empirical dataset for illustration. A simulation study shows that the approximation naturally produces a sparse loading matrix and more accurately estimates the factor loadings and the covariance matrix, in the sense of having a lower mean squared error than factor rotations, under various conditions.

摘要

本文研究了探索性因子分析(EFA)模型的惩罚最大似然(PML)问题。EFA模型通常使用最大似然法进行估计,然后对估计出的载荷矩阵进行旋转以获得稀疏表示。惩罚最大似然法同时拟合EFA模型并生成稀疏载荷矩阵。为了克服PML的一些计算缺点,本文提出了一种PML的近似方法。它进一步应用于一个实证数据集进行说明。一项模拟研究表明,在各种条件下,该近似方法自然地产生稀疏载荷矩阵,并且在比因子旋转具有更低均方误差的意义上,更准确地估计因子载荷和协方差矩阵。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验