Suppr超能文献

血浆代谢物和脂质可预测肥胖、非糖尿病个体在进行 2 阶段饮食干预后胰岛素敏感性的改善。

Plasma metabolites and lipids predict insulin sensitivity improvement in obese, nondiabetic individuals after a 2-phase dietary intervention.

机构信息

Nestlé Institute of Health Sciences, Lausanne, Switzerland.

Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1048, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Toulouse, France.

出版信息

Am J Clin Nutr. 2018 Jul 1;108(1):13-23. doi: 10.1093/ajcn/nqy087.

Abstract

BACKGROUND

Weight loss in obese individuals aims to reduce the risk of type 2 diabetes by improving glycemic control. Yet, significant intersubject variability is observed and the outcomes remain poorly predictable.

OBJECTIVE

The aim of the study was to predict whether an individual will show improvements in insulin sensitivity above or below the median population change at 6 mo after a low-calorie-diet (LCD) intervention.

DESIGN

With the use of plasma lipidomics and metabolomics for 433 subjects from the Diet, Obesity, and Genes (DiOGenes) Study, we attempted to predict good or poor Matsuda index improvements 6 mo after an 8-wk LCD intervention (800 kcal/d). Three independent analysis groups were defined: "training" (n = 119) for model construction, "testing" (n = 162) for model comparison, and "validation" (n = 152) to validate the final model.

RESULTS

Initial modeling with baseline clinical variables (body mass index, Matsuda index, total lipid concentrations, sex, age) showed limited performance [area under the curve (AUC) on the "testing dataset" = 0.69; 95% CI: 0.61, 0.77]. Significantly better performance was achieved with an omics model based on 27 variables (AUC = 0.77; 95% CI: 0.70, 0.85; P = 0.0297). This model could be greatly simplified while keeping the same performance. The simplified model relied on baseline Matsuda index, proline, and phosphatidylcholine 0-34:1. It successfully replicated on the validation set (AUC = 0.75; 95% CI: 0.67, 0.83) with the following characteristics: specificity = 0.73, sensitivity = 0.68, negative predictive value = 0.60, and positive predictive value = 0.80. Marginally lower performance was obtained when replacing the Matsuda index with homeostasis model assessment of insulin resistance (AUC = 0.72; 95% CI: 0.64, 0.80; P = 0.08).

CONCLUSIONS

Our study proposes a model to predict insulin sensitivity improvements, 6 mo after LCD completion in a large population of overweight or obese nondiabetic subjects. It relies on baseline information from 3 variables, accessible from blood samples. This model may help clinicians assessing the large variability in dietary interventions and predict outcomes before an intervention. This trial was registered at www.clinicaltrials.gov as NCT00390637.

摘要

背景

肥胖个体的减肥目标是通过改善血糖控制来降低 2 型糖尿病的风险。然而,观察到显著的个体间变异性,并且结果仍然难以预测。

目的

本研究旨在预测个体在接受低热量饮食(LCD)干预 6 个月后,胰岛素敏感性的改善是否会高于或低于人群中位数变化。

设计

使用来自饮食、肥胖和基因(DiOGenes)研究的 433 名受试者的血浆脂质组学和代谢组学数据,我们试图预测在 8 周的 LCD 干预(800 卡路里/天)后 6 个月时,Matsuda 指数的改善情况是好还是差。定义了三个独立的分析组:“训练”(n=119)用于模型构建,“测试”(n=162)用于模型比较,“验证”(n=152)用于验证最终模型。

结果

使用基线临床变量(体重指数、Matsuda 指数、总脂质浓度、性别、年龄)进行初步建模,表现有限[在“测试数据集”上的曲线下面积(AUC)=0.69;95%置信区间(CI):0.61,0.77]。基于 27 个变量的组学模型表现显著更好(AUC=0.77;95%CI:0.70,0.85;P=0.0297)。在保持相同性能的情况下,该模型可以大大简化。简化模型依赖于基线 Matsuda 指数、脯氨酸和磷脂酰胆碱 0-34:1。它在验证集上成功复制(AUC=0.75;95%CI:0.67,0.83),具有以下特点:特异性=0.73,敏感性=0.68,阴性预测值=0.60,阳性预测值=0.80。当用稳态模型评估的胰岛素抵抗(AUC=0.72;95%CI:0.64,0.80;P=0.08)替代 Matsuda 指数时,性能略有下降。

结论

我们的研究提出了一种模型,可以预测超重或肥胖的非糖尿病受试者在完成低热量饮食后 6 个月的胰岛素敏感性改善情况。它依赖于来自 3 个变量的基线信息,这些信息可从血液样本中获得。该模型可能有助于临床医生评估饮食干预的巨大变异性,并在干预前预测结果。该试验在 www.clinicaltrials.gov 上注册为 NCT00390637。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9451/6600064/69a462049c13/nqy087fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验