Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
Obesity (Silver Spring). 2021 May;29(5):859-869. doi: 10.1002/oby.23127. Epub 2021 Apr 3.
Identifying predictors of weight loss and clinical outcomes may increase understanding of individual variability in weight loss response. We hypothesized that baseline multiomic features, including DNA methylation (DNAme), metabolomics, and gut microbiome, would be predictive of short-term changes in body weight and other clinical outcomes within a comprehensive weight loss intervention.
Healthy adults with overweight or obesity (n = 62, age 18-55 years, BMI 27-45 kg/m , 75.8% female) participated in a 1-year behavioral weight loss intervention. To identify baseline omic predictors of changes in clinical outcomes at 3 and 6 months, whole-blood DNAme, plasma metabolites, and gut microbial genera were analyzed.
A network of multiomic relationships informed predictive models for 10 clinical outcomes (body weight, waist circumference, fat mass, hemoglobin A , homeostatic model assessment of insulin resistance, total cholesterol, triglycerides, C-reactive protein, leptin, and ghrelin) that changed significantly (P < 0.05). For eight of these, adjusted R ranged from 0.34 to 0.78. Our models identified specific DNAme sites, gut microbes, and metabolites that were predictive of variability in weight loss, waist circumference, and circulating triglycerides and that are biologically relevant to obesity and metabolic pathways.
These data support the feasibility of using baseline multiomic features to provide insight for precision nutrition-based weight loss interventions.
识别体重减轻和临床结果的预测因子可以提高对个体体重减轻反应差异的理解。我们假设,基线多组学特征,包括 DNA 甲基化(DNAme)、代谢组学和肠道微生物组,将预测综合减肥干预中体重和其他临床结果的短期变化。
超重或肥胖的健康成年人(n=62,年龄 18-55 岁,BMI 27-45kg/m2,75.8%为女性)参加了为期 1 年的行为减肥干预。为了确定基线组学特征对 3 个月和 6 个月临床结果变化的预测因子,分析了全血 DNAme、血浆代谢物和肠道微生物属。
多组学关系网络为 10 个临床结果(体重、腰围、脂肪量、血红蛋白 A1c、胰岛素抵抗稳态模型评估、总胆固醇、甘油三酯、C 反应蛋白、瘦素和胃饥饿素)提供了预测模型,这些结果均发生了显著变化(P<0.05)。对于其中的 8 个,调整后的 R 值范围从 0.34 到 0.78。我们的模型确定了特定的 DNAme 位点、肠道微生物和代谢物,这些与体重减轻、腰围和循环甘油三酯的变异性有关,并且与肥胖和代谢途径具有生物学相关性。
这些数据支持使用基线多组学特征为基于精准营养的减肥干预提供见解的可行性。