Suppr超能文献

评估DINA模型的项目水平拟合度。

Assessing Item-Level Fit for the DINA Model.

作者信息

Wang Chun, Shu Zhan, Shang Zhuoran, Xu Gongjun

机构信息

University of Minnesota, Minneapolis, USA.

Educational Testing Service, Princeton, NJ, USA.

出版信息

Appl Psychol Meas. 2015 Oct;39(7):525-538. doi: 10.1177/0146621615583050. Epub 2015 May 5.

Abstract

This research focuses on developing item-level fit checking procedures in the context of diagnostic classification models (DCMs), and more specifically for the "Deterministic Input; Noisy 'And' gate" (DINA) model. Although there is a growing body of literature discussing model fit checking methods for DCM, the item-level fit analysis is not adequately discussed in literature. This study intends to take an initiative to fill in this gap. Two approaches are proposed, one stems from classical goodness-of-fit test statistics coupled with the Expectation-Maximization algorithm for model estimation, and the other is the posterior predictive model checking (PPMC) method coupled with the Markov chain Monte Carlo estimation. For both approaches, the chi-square statistic and a power-divergence index are considered, along with Stone's method for considering uncertainty in latent attribute estimation. A simulation study with varying manipulated factors is carried out. Results show that both approaches are promising if Stone's method is imposed, but the classical goodness-of-fit approach has a much higher detection rate (i.e., proportion of misfit items that are correctly detected) than the PPMC method.

摘要

本研究聚焦于在诊断分类模型(DCM)的背景下开发项目级拟合检验程序,更具体地说是针对“确定性输入;噪声‘与’门”(DINA)模型。尽管有越来越多的文献讨论DCM的模型拟合检验方法,但项目级拟合分析在文献中并未得到充分讨论。本研究旨在主动填补这一空白。提出了两种方法,一种源于经典的拟合优度检验统计量并结合期望最大化算法进行模型估计,另一种是后验预测模型检验(PPMC)方法并结合马尔可夫链蒙特卡罗估计。对于这两种方法,均考虑了卡方统计量和幂散度指数,以及用于考虑潜在属性估计中不确定性的斯通方法。进行了一项具有不同操纵因素的模拟研究。结果表明,如果采用斯通方法,两种方法都很有前景,但经典的拟合优度方法比PPMC方法具有更高的检测率(即被正确检测出的不拟合项目的比例)。

相似文献

1
Assessing Item-Level Fit for the DINA Model.评估DINA模型的项目水平拟合度。
Appl Psychol Meas. 2015 Oct;39(7):525-538. doi: 10.1177/0146621615583050. Epub 2015 May 5.
3
Cognitive diagnosis modelling incorporating item response times.结合项目反应时间的认知诊断建模
Br J Math Stat Psychol. 2018 May;71(2):262-286. doi: 10.1111/bmsp.12114. Epub 2017 Sep 5.
8
Estimating the DINA model parameters using the No-U-Turn Sampler.使用无回转采样器估计DINA模型参数。
Biom J. 2018 Mar;60(2):352-368. doi: 10.1002/bimj.201600225. Epub 2017 Dec 1.

引用本文的文献

2
Modified Item-Fit Indices for Dichotomous IRT Models with Missing Data.具有缺失数据的二分IRT模型的修正项目拟合指数
Appl Psychol Meas. 2022 Nov;46(8):705-719. doi: 10.1177/01466216221125176. Epub 2022 Sep 19.
3
Performance of the Statistic for the Multidimensional Graded Response Model.多维等级反应模型统计量的性能
Educ Psychol Meas. 2021 Jun;81(3):491-522. doi: 10.1177/0013164420958060. Epub 2020 Sep 23.
5
Assessing Item-Level Fit for Higher Order Item Response Theory Models.评估高阶项目反应理论模型的项目水平拟合度。
Appl Psychol Meas. 2018 Nov;42(8):644-659. doi: 10.1177/0146621618762740. Epub 2018 Mar 21.
7
Inferential Item-Fit Evaluation in Cognitive Diagnosis Modeling.认知诊断建模中的推断性项目拟合评估
Appl Psychol Meas. 2017 Nov;41(8):614-631. doi: 10.1177/0146621617707510. Epub 2017 May 19.
8
Comparison of Relative Fit Indices for Diagnostic Model Selection.诊断模型选择的相对拟合指数比较。
Appl Psychol Meas. 2017 Sep;41(6):422-438. doi: 10.1177/0146621617695521. Epub 2017 Mar 8.

本文引用的文献

3
Goodness-of-Fit Testing for Latent Class Models.潜在类别模型的拟合优度检验
Multivariate Behav Res. 1993 Jul 1;28(3):375-89. doi: 10.1207/s15327906mbr2803_4.
5
Data-Driven Learning of Q-Matrix.基于数据驱动的Q矩阵学习
Appl Psychol Meas. 2012 Oct;36(7):548-564. doi: 10.1177/0146621612456591.
7
A general diagnostic model applied to language testing data.应用于语言测试数据的通用诊断模型。
Br J Math Stat Psychol. 2008 Nov;61(Pt 2):287-307. doi: 10.1348/000711007X193957. Epub 2007 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验