Suppr超能文献

具有连续和混合型潜在变量的认知诊断高效模型。

Efficient Models for Cognitive Diagnosis With Continuous and Mixed-Type Latent Variables.

作者信息

Hong Hyokyoung, Wang Chun, Lim Youn Seon, Douglas Jeff

机构信息

Michigan State University, East Lansing, USA.

University of Minnesota, Minneapolis, USA.

出版信息

Appl Psychol Meas. 2015 Jan;39(1):31-43. doi: 10.1177/0146621614524981. Epub 2014 Apr 14.

Abstract

The issue of latent trait granularity in diagnostic models is considered, comparing and contrasting latent trait and latent class models used for diagnosis. Relationships between conjunctive cognitive diagnosis models (CDMs) with binary attributes and noncompensatory multidimensional item response models are explored, leading to a continuous generalization of the Noisy Input, Deterministic "And" Gate (NIDA) model. A model that combines continuous and discrete latent variables is proposed that includes a noncompensatory item response theory (IRT) term and a term following the discrete attribute Deterministic Input, Noisy "And" Gate (DINA) model in cognitive diagnosis. The Tatsuoka fraction subtraction data are analyzed with the proposed models as well as with the DINA model, and classification results are compared. The applicability of the continuous latent trait model and the combined IRT and CDM is discussed, and arguments are given for development of simple models for complex cognitive structures.

摘要

本文考虑了诊断模型中潜在特质粒度的问题,比较并对比了用于诊断的潜在特质模型和潜在类别模型。探讨了具有二元属性的联合认知诊断模型(CDM)与非补偿性多维项目反应模型之间的关系,从而实现了噪声输入确定性“与”门(NIDA)模型的连续泛化。提出了一种结合连续和离散潜在变量的模型,该模型包括一个非补偿性项目反应理论(IRT)项和一个遵循认知诊断中离散属性确定性输入噪声“与”门(DINA)模型的项。使用所提出的模型以及DINA模型对Tatsuoka分数减法数据进行分析,并比较分类结果。讨论了连续潜在特质模型以及IRT与CDM相结合模型的适用性,并为开发针对复杂认知结构的简单模型提供了论据。

相似文献

8
Computerized Adaptive Testing for Cognitively Based Multiple-Choice Data.基于认知的多项选择题数据的计算机自适应测试
Appl Psychol Meas. 2019 Jul;43(5):388-401. doi: 10.1177/0146621618798665. Epub 2018 Sep 18.

引用本文的文献

1
The Q-Matrix Anchored Mixture Rasch Model.Q矩阵锚定混合拉施模型
Front Psychol. 2021 Mar 4;12:564976. doi: 10.3389/fpsyg.2021.564976. eCollection 2021.
3
Assessing Item-Level Fit for the DINA Model.评估DINA模型的项目水平拟合度。
Appl Psychol Meas. 2015 Oct;39(7):525-538. doi: 10.1177/0146621615583050. Epub 2015 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验