Kuo Bor-Chen, Chen Chun-Hua, de la Torre Jimmy
National Taichung University of Education, Taiwan.
The University of Hong Kong.
Appl Psychol Meas. 2018 May;42(3):179-191. doi: 10.1177/0146621617722791. Epub 2017 Oct 7.
At present, most existing cognitive diagnosis models (CDMs) are designed to either identify the presence and absence of skills or misconceptions, but not both. This article proposes a CDM that can be used to simultaneously identify what skills and misconceptions students possess. In addition, it proposes the use of the expectation-maximization algorithm to estimate the model parameters. A simulation study is conducted to evaluate the viability of the proposed model and algorithm. Real data are analyzed to demonstrate the applicability of the proposed model, and compare it with existing CDMs. Furthermore, a real data-based simulation study is conducted to determine how the correct classification rates in the context of the proposed model can be improved. Issues related to the proposed model and future research are discussed.
目前,大多数现有的认知诊断模型(CDM)旨在识别技能的存在与否或错误概念的存在与否,但不能同时识别两者。本文提出了一种可用于同时识别学生所拥有的技能和错误概念的认知诊断模型。此外,还提出了使用期望最大化算法来估计模型参数。进行了一项模拟研究以评估所提出模型和算法的可行性。分析实际数据以证明所提出模型的适用性,并将其与现有认知诊断模型进行比较。此外,还进行了一项基于实际数据的模拟研究,以确定如何提高所提出模型背景下的正确分类率。讨论了与所提出模型相关的问题和未来研究方向。