Suppr超能文献

近年来细菌中沉默生物合成基因簇的激活研究进展。

Recent advances in activating silent biosynthetic gene clusters in bacteria.

机构信息

Department of Chemistry, Princeton University, Princeton, NJ, United States.

Department of Chemistry, Princeton University, Princeton, NJ, United States; Department of Molecular Biology, Princeton University, Princeton, NJ, United States.

出版信息

Curr Opin Microbiol. 2018 Oct;45:156-163. doi: 10.1016/j.mib.2018.05.001. Epub 2018 Jun 5.

Abstract

The explosion of microbial genome sequences has shown that bacteria harbor an immense, largely untapped potential for the biosynthesis of diverse natural products, which have traditionally served as an important source of pharmaceutical compounds. Most of the biosynthetic genes that can be detected bioinformatically are not, or only weakly, expressed under standard laboratory growth conditions. Herein we review three recent approaches that have been developed for inducing these so-called silent biosynthetic gene cluster: insertion of constitutively active promoters using CRISPR-Cas9, high-throughput elicitor screening for identification of small molecule inducers, and reporter-guided mutant selection for creation of overproducing strains. Together with strategies implemented previously, these approaches promise to unleash the products of silent gene clusters in years to come.

摘要

微生物基因组序列的爆炸式增长表明,细菌蕴藏着巨大的、尚未充分开发的潜力,可以用于合成多样化的天然产物,而这些天然产物一直是药物化合物的重要来源。在生物信息学上能够检测到的大多数生物合成基因,在标准实验室生长条件下并不表达,或者表达很弱。本文综述了三种最近开发的方法,用于诱导这些所谓的沉默生物合成基因簇:使用 CRISPR-Cas9 插入组成型激活的启动子,高通量筛选鉴定小分子诱导剂,以及报告基因指导的突变体选择以创建高产菌株。结合以前实施的策略,这些方法有望在未来几年内释放沉默基因簇的产物。

相似文献

1
Recent advances in activating silent biosynthetic gene clusters in bacteria.
Curr Opin Microbiol. 2018 Oct;45:156-163. doi: 10.1016/j.mib.2018.05.001. Epub 2018 Jun 5.
2
Unlocking the trove of metabolic treasures: activating silent biosynthetic gene clusters in bacteria and fungi.
Curr Opin Microbiol. 2019 Oct;51:9-15. doi: 10.1016/j.mib.2019.03.003. Epub 2019 Apr 15.
3
Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors.
Appl Microbiol Biotechnol. 2011 Jul;91(1):47-61. doi: 10.1007/s00253-011-3336-x. Epub 2011 May 21.
4
Discovery of Amidotemplated Natural Product Assembly.
Biochemistry. 2019 Nov 19;58(46):4583-4584. doi: 10.1021/acs.biochem.9b00928. Epub 2019 Nov 11.
7
Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology.
Chem Biol. 2013 May 23;20(5):636-47. doi: 10.1016/j.chembiol.2013.04.011.
8
Classic Spotlight: the Birth of the Transcriptional Activator.
J Bacteriol. 2016 Feb 12;198(5):744. doi: 10.1128/JB.00009-16. Print 2016 Mar.
9
Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules.
FEMS Microbiol Rev. 2017 Jan;41(1):19-33. doi: 10.1093/femsre/fuw035. Epub 2016 Aug 29.
10
The predominance of nucleotidyl activation in bacterial phosphonate biosynthesis.
Nat Commun. 2019 Aug 16;10(1):3698. doi: 10.1038/s41467-019-11627-6.

引用本文的文献

3
Strategies for Actinobacteria Isolation, Cultivation, and Metabolite Production that Are Biologically Important.
ACS Omega. 2025 Apr 18;10(16):15923-15934. doi: 10.1021/acsomega.5c01344. eCollection 2025 Apr 29.
5
Fatty acyl-AMP ligases in bacterial natural product biosynthesis.
Nat Prod Rep. 2025 Apr 16;42(4):739-753. doi: 10.1039/d4np00073k.
6
Unravelling the Antibiotic Resistance: Molecular Insights and Combating Therapies.
Appl Biochem Biotechnol. 2025 Feb 18. doi: 10.1007/s12010-025-05182-8.
7
Plant and marine-derived natural products: sustainable pathways for future drug discovery and therapeutic development.
Front Pharmacol. 2025 Jan 6;15:1497668. doi: 10.3389/fphar.2024.1497668. eCollection 2024.
8
Microbial secondary metabolites: advancements to accelerate discovery towards application.
Nat Rev Microbiol. 2025 Jun;23(6):338-354. doi: 10.1038/s41579-024-01141-y. Epub 2025 Jan 17.
9
The phospho-ferrozine assay: a tool to study bacterial redox-active metabolites produced at the plant root.
Appl Environ Microbiol. 2025 Jan 31;91(1):e0219424. doi: 10.1128/aem.02194-24. Epub 2024 Dec 17.
10
Metabolic engineering of to enhance the synthesis of valuable natural products.
Eng Microbiol. 2022 Apr 23;2(2):100022. doi: 10.1016/j.engmic.2022.100022. eCollection 2022 Jun.

本文引用的文献

1
Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery.
Biochem Pharmacol. 2018 Jul;153:24-34. doi: 10.1016/j.bcp.2018.01.007. Epub 2018 Jan 5.
2
Though Much Is Taken, Much Abides: Finding New Antibiotics Using Old Ones.
Biochemistry. 2017 Sep 19;56(37):4925-4926. doi: 10.1021/acs.biochem.7b00782. Epub 2017 Sep 1.
4
Discovery of a Cryptic Antifungal Compound from Streptomyces albus J1074 Using High-Throughput Elicitor Screens.
J Am Chem Soc. 2017 Jul 12;139(27):9203-9212. doi: 10.1021/jacs.7b02716. Epub 2017 Jun 29.
5
Opportunities for natural products in 21 century antibiotic discovery.
Nat Prod Rep. 2017 Jul 1;34(7):694-701. doi: 10.1039/c7np00019g. Epub 2017 Jun 1.
6
Chemical ecology of antibiotic production by actinomycetes.
FEMS Microbiol Rev. 2017 May 1;41(3):392-416. doi: 10.1093/femsre/fux005.
8
Breaking the silence: new strategies for discovering novel natural products.
Curr Opin Biotechnol. 2017 Dec;48:21-27. doi: 10.1016/j.copbio.2017.02.008. Epub 2017 Mar 11.
9
Large-Scale Transposition Mutagenesis of Streptomyces coelicolor Identifies Hundreds of Genes Influencing Antibiotic Biosynthesis.
Appl Environ Microbiol. 2017 Mar 2;83(6). doi: 10.1128/AEM.02889-16. Print 2017 Mar 15.
10
Oxidative Cyclization in Natural Product Biosynthesis.
Chem Rev. 2017 Apr 26;117(8):5226-5333. doi: 10.1021/acs.chemrev.6b00478. Epub 2016 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验